
SquirRL: Automating Attack Analysis on
Blockchain Incentive Mechanisms with Deep

Reinforcement Learning

Charlie Hou∗
Carnegie Mellon University, IC3

charlieh@andrew.cmu.edu

Mingxun Zhou∗
Peking University

zhoumingxun@pku.edu.cn

Yan Ji
Cornell Tech, IC3
yj348@cornell.edu

Phil Daian
Cornell Tech, IC3

pad242@cornell.edu

Florian Tramèr
Stanford University

tramer@cs.stanford.edu

Giulia Fanti
Carnegie Mellon University, IC3

gfanti@andrew.cmu.edu

Ari Juels
Cornell Tech, IC3
juels@cornell.edu

Abstract—Incentive mechanisms are central to the function-
ality of permissionless blockchains: they incentivize participants
to run and secure the underlying consensus protocol. Designing
incentive-compatible incentive mechanisms is notoriously chal-
lenging, however. As a result, most public blockchains today
use incentive mechanisms whose security properties are poorly
understood and largely untested. In this work, we propose
SquirRL, a framework for using deep reinforcement learning
to analyze attacks on blockchain incentive mechanisms. We
demonstrate SquirRL’s power by first recovering known attacks:
(1) the optimal selfish mining attack in Bitcoin [56], and (2) the
Nash equilibrium in block withholding attacks [18]. We also
use SquirRL to obtain several novel empirical results. First,
we discover a counterintuitive flaw in the widely used rushing
adversary model when applied to multi-agent Markov games with
incomplete information. Second, we demonstrate that the optimal
selfish mining strategy identified in [56] is actually not a Nash
equilibrium in the multi-agent selfish mining setting. In fact, our
results suggest (but do not prove) that when more than two
competing agents engage in selfish mining, there is no profitable
Nash equilibrium. This is consistent with the lack of observed
selfish mining in the wild. Third, we find a novel attack on a
simplified version of Ethereum’s finalization mechanism, Casper
the Friendly Finality Gadget (FFG) that allows a strategic agent
to amplify her rewards by up to 30%. Notably, [12] shows that
honest voting is a Nash equilibrium in Casper FFG; our attack
shows that when Casper FFG is composed with selfish mining, this
is no longer the case. Altogether, our experiments demonstrate
SquirRL’s flexibility and promise as a framework for studying
attack settings that have thus far eluded theoretical and empirical
understanding.

Keywords—Blockchain, Deep reinforcement learning, Incentive
mechanisms

∗Equal contribution

I. INTRODUCTION

Blockchains today require participants to expend substantial
resources (storage, computation, electricity) to ensure the
correctness and liveness of other users’ transactions. Most public
blockchains therefore rely critically on incentive mechanisms to
motivate users to participate in blockchain consensus protocols.
That is, users are typically paid (in native cryptocurrency) to
sustain the system. Incentive mechanisms are therefore central
to the functionality of most permissionless blockchains.

For example, Bitcoin’s consensus protocol requires partici-
pants (also known as miners) to build a sequential data structure
of blocks, where each block is generated in a computationally
intensive process (called mining). To incentivize participation,
Bitcoin miners receive a block reward (in Bitcoins) for every
block they mine that is accepted by the rest of the network.
Miners also receive smaller transaction fees for each transaction
included in a block; this is done to encourage transaction
packing. The incentive mechanisms of block rewards and fees
have driven the remarkable growth of the Bitcoin ecosystem.

In practice, poorly-designed incentive mechanisms can be
exploited by rational users. By deviating from the protocol-
specified behavior, users may be able to accumulate more
rewards than what they are nominally entitled to. For example,
selfish mining is a well-known attack on Bitcoin’s incentive
mechanism that allows a strategic miner to reap more than her
fair share of block rewards by waiting to publish her blocks
until she would cause the most damage to the honest majority
[19]. Many subsequent papers have explored both attacks on
Bitcoin’s incentive mechanism [13], [18], [29], [40], [48], [56]
as well as other cryptocurrencies [24], [49], [51], [54].

Today, attacks on blockchain incentive mechanisms are
typically studied through a lengthy process of modeling and
theoretical analysis [13], [18], [24], [29], [40], [48], [51],
[54], [56]. As many cryptocurrencies lack the resources for
theoretical analysis, the vast majority of blockchain incentive
mechanisms have not been studied at all. Substantial amounts
of cryptocurrency may thus be vulnerable to unknown attacks.

In this work, we propose SquirRL, a generalizable frame-
work for using deep reinforcement learning (DRL) to analyze

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24188
www.ndss-symposium.org

blockchain incentive mechanisms. SquirRL is intended as
a general-purpose methodology for blockchain developers
to test incentive mechanisms for vulnerabilities. It does not
provide theoretical guarantees: just because it does not find
any profitable attacks does not mean that honest behavior
is a dominant strategy. We find in practice, however, that
instantiations of SquirRL are effective at identifying adversarial
strategies, which can be used to prove that an incentive mech-
anism is insecure. Such tools are often useful in applications.
For example, some tools in software development, such as
fuzzers [38], are useful for identifying vulnerabilities despite not
providing completeness guarantees. Our primary contributions
are threefold:

1) Framework: We present SquirRL as a general framework for
exploring vulnerabilities in blockchain incentive mechanisms
and recovering adversarial strategies. The framework broadly
involves: (1) creation of a simulation environment, with ac-
companying feature and action spaces reflecting the views
and capabilities of participating agents; (2) selection of an
adversarial model, including numbers and types of agents; and
(3) selection of a suitable RL algorithm and associated reward
function. As part of this framework, we develop a general state
space representation for a broad class of blockchain incentive
mechanisms, which allows us to trade off feature dimensionality
with accuracy. We show how to use this framework flexibly
to handle settings involving varying environments, numbers of
agents, and rewards.
2) Selfish-mining evaluation: We apply SquirRL to various
blockchain consensus/incentive protocols to analyze variants of
selfish mining. Using SquirRL, we are able to recover known
theoretical results in the Bitcoin protocol, while also extend-
ing state-of-the-art results to domains that were previously
intractable (e.g., the multi-agent setting, larger state spaces,
other protocols). Our experiments suggest two new findings:
• Theoretically analyzing repeated interactions between multi-

ple strategic agents is difficult due to the large state and action
space. Prior work in this setting has therefore simplified
the strategy space [45], under which a semi-selfish mining
strategy is shown to be a Nash equilibrium. However, our
experiments suggest that under a more general strategy space,
semi-selfish mining is not a Nash equilibrium. In fact, for
the Bitcoin protocol, all variants of selfish mining appear to
be unprofitable in settings with at least three strategic agents.
This is consistent with the lack of observed selfish mining
in the wild, although it is unclear whether this observation
or other externalities are to blame.

• We find that the classical notion of a rushing adversary,
which is widely used in the cryptographic literature to model
a worst-case adversary [20], [43], can give counterintuitive
and nonphysical results in multi-strategic-agent settings. This
has implications beyond the blockchain domain regarding
how security researchers should model multi-agent settings.
We expect this observation may be particularly relevant as
DRL gains adoption as a tool for learning to attack and/or
defend complex systems that are not amenable to theoretical
analysis [50], [58], [73].

3) Demonstration of extensibility: We show that SquirRL is
generally applicable to attacks on other types of incentive
mechanisms beyond selfish mining:
• We apply SquirRL to the proposed Ethereum finalization

mechanism, Casper the Friendly Finality Gadget (FFG) [11].
These results illustrate that a strategic miner can collude
with a Casper FFG validator to amplify its rewards by up to
30% more than a strategic miner or validator could do alone.
Such strategic collusion can cause honest validators to leave,
progressively corrupting the system. This raises important
questions about the composability of incentive mechanisms.
• We apply SquirRL to block withholding attacks, where

it converges to two-player strategies that match the Nash
equilibrium in [18].

Paper outline: We motivate the need for SquirRL in §II,
explaining why existing techniques fall short, and then provide
background on deep reinforcement learning in §III. We present
the design of SquirRL in §IV. We evaluate SquirRL on a variety
of settings: the single-strategic-agent selfish mining setting in
§V, the multi-strategic-agent selfish mining setting in §VI, and
Casper FFG and the Miner’s Dilemma in §VII. We discuss
related work in §VIII and conclude with a brief summary
in §IX.

II. MOTIVATION

Today, the process for analyzing new attacks on blockchain
incentive mechanisms is manual and time-consuming. Typically,
studying such attacks require some combination of theoretical
analysis, simulation, and intuition [56]. Each becomes more
difficult to obtain as the complexity of the underlying protocol
grows. In particular, game-theoretic analysis of these systems
tends to be challenging for three reasons: (1) the state space is
large (or continuous), (2) the game is repeated, and (3) there
can be many agents. Indeed, much of the existing analysis has
focused on settings where only one or two agents are allowed
to deviate from the honest mining strategy [45], [56].

At the same time, new protocols are emerging frequently,
each with its own incentive mechanism [31], [72], [77]. Of-
tentimes, protocol designers rely on intuition to reason about
the security of their incentive mechanisms, in part because
we lack general-purpose tools for mechanism analysis. Even
when protocol designers provide security proofs, they typically
at most show that honest behavior is a Nash equilibrium if
honest parties are a significant portion of the participants in the
protocol [11], [53]. This weak guarantee says nothing about
other equilibria or the (perhaps more realistic) setting in which
many competing parties behave rationally. Our central premise
is that a systematic and largely automated approach for testing
incentive mechanisms would streamline this process, and could
help catch incentive mechanism bugs before deployment in the
wild.

A. Use Case

We envision protocol designers using our framework to study
a natural progression of adversarial models and experiments
to help address key security and incentive-alignment questions
for an incentive mechanism M . These are shown in Table I.

For a given adversarial resource (e.g., mining power), a
single strategic agent S competing against a group of honest
agents represents the most powerful possible adversary. (Such
an agent can simulate any set of strategies among multiple
agents.) S can steal rewards from honest agent H , whose

2

Number of Strategic Agents Representative Setting Agent Types Explored questions

1 Single strategic agent Sys→ S • What impact from worst-case attack?
• What is optimal adversarial strategy?

2 Emergent strategic-agent
behavior

S vs. Sys • Is S dominant?
• Is S profitable against a competing agent?

Sys vs. Sys • Is two-agent game stable?

k ≥ 3 Community of competing
strategic agents Sys vs. . . . vs. Sys︸ ︷︷ ︸

k agents

• Is multi-agent strategic play profitable?
• Is H dominant in the multi-agent setting?

TABLE I: Experimental progression in an automated incentive mechanism analysis system Sys. The sequence of experiments with
increasing numbers of strategic agents sheds light on key security questions for mechanism M . Notation Sys→ S is shorthand
denoting S as the output of the automated system.

strategy is fixed a priori and thus cannot develop a counter-
strategy. Learning S thus yields insights into the worst-case
performance of M .

Addition of a second strategic agent then addresses the
question of whether S itself is dominant or suboptimal in
the presence of a competing agent. This setting captures the
dynamics when a single strategic agent is first challenged by
others. By training two competing agents in tandem, it is also
possible to explore questions such as: How stable are learned
strategies over time?

In actual deployment of a mechanism M , of course a
community of k≥ 3 competing strategic agents can arise, a case
more plausible than sustained attack by a single strategic agent.
The SquirRL framework dictates analysis with various values
of k to explore the likely practical security of M . For example,
a mechanism may have poor worst-case security yet have its
participants converge to the strategy of H for all players given
competition among strategic agents. A key question is: How
much reward, as a function of k, can strategic agents collectively
steal from H ? We emphasize that the experiments in Table I
are a starting point, not a full prescription. However, they shed
light on a number of central, incentive-related questions that
are nontrivial to evaluate today.

B. Straw-man solution

A natural first step for analyzing consensus protocols is
modeling them as Markov Decision Processes (MDPs), and
using classical algorithms such as policy iteration or value
iteration [67] to solve them. MDPs are commonly used to
model problems where an agent wishes to maximize its reward
in a known, random environment [75]. Value iteration and policy
iteration have been used effectively to computationally learn
optimal adversarial strategies in the two-agent (one strategic,
one honest) setting of the Bitcoin protocol [56].

MDPs are defined as a tuple (S,A,P,R), where S denotes
a set of states, A denotes a set of actions the agent can take,
P denotes the probability transition matrix, where Pa(s,s′) =
P(st+1 = s′|st = s,at = a) denotes the probability of the agent
transitioning to state s′ from state s by taking action a. R
is the reward matrix, where Ra(s,s′) denotes the expected
reward associated with transitioning from state s to s′ by

taking action a. We highlight one aspect of this definition. It
relies critically on a Markov assumption, which states that the
probability distribution over states depends only on the previous
state and the action taken at each time step. Conditioned on
these assumptions, the objective in an MDP is to recover a
strategy π that optimizes the expected discounted long-term
reward E[∑∞

t=0 η tRat (st ,st+1)], where η ∈ (0,1) is a discount
factor that accounts for how much the agent values short-term
rewards over long-term ones, and the expectation is taken over
the randomness in the system evolution and the potentially
randomized strategy π.

With known and exactly specified (S,A,P,R), value iteration
or policy iteration can exactly solve (up to desired precision)
for the optimal π. In [56], policy iteration was used to
find an optimal selfish mining strategy for a rational Bitcoin
agent. However, policy and value iteration exhibit two primary
constraints that prevent them from being a useful general-
purpose tool for our problem.

1. They assume a stationary environment. To formulate
an MDP, there must exist a fixed probability transition matrix
P. This is true in the single-strategic-agent setting where one
agent is honest and thus behaves according to a known strategy.
However, in practical settings, we may have multiple rational
agents who are dynamically changing their strategies, leading
to a non-stationary environment. This is no longer an MDP,
but a Markov game, where policy iteration and value iteration
do not apply.

2. They scale poorly with growing state spaces. Policy and
value iteration store the probability transition matrix P and
reward matrix R explicitly, which requires storage O(|S|2|A|)
(a probability value must be stored for each transition (s,a,s′),
where s is the current state, a is the action taken, and s′ is the
next state). This can be prohibitive for protocols where the
state cannot be represented by a compact feature, e.g., when
the reward is not computed from a single chain in the ledger’s
directed acyclic graph (DAG) [37], [64], [78].

Even in Bitcoin, the state space can be intractably large.
For example, if there are two strategic (selfish mining) agents
A and B, agent A cannot observe the hidden blocks of agent
B. Agent A needs to at least have an unbiased estimate of B’s
hidden blocks to write out an MDP. The only way for agent

3

A to estimate agent B’s hidden blocks is to use the history of
its observations as well as some notion of time. Suppose that
we wanted to consider a past history of t0 observations, and
the upper limit for our feature for time is T . Then we need
storage O((|S|T)t0+2|A|) (where we let S be the space of all
Bitcoin blocktrees), which quickly grows infeasible.

III. DEEP REINFORCEMENT LEARNING

Reinforcement learning (RL) is a class of machine learning
algorithms that learn strategies enabling an agent to maximize
its cumulative rewards in an environment. Much RL research
is focused on solving MDPs when P or R are unknown or too
large to be practical [67]. However, the field encompasses more
general settings, such as Markov games. Deep reinforcement
learning (DRL) is a class of RL that uses neural networks to
learn policies, often without needing to explicitly specify the
underlying system dynamics [21]. In this work, we explore the
potential of deep reinforcement learning to automate the analysis
of attacks on blockchain incentive mechanisms, particularly in
settings where algorithms like policy iteration are impractical
or impossible to use (e.g., large or infinite state spaces, Markov
games, and MDPs with unspecified P or R).

DRL has been particularly successful in problems where the
state space is intractably large. Roughly, this is because DRL
uses neural networks to replace tables; for instance, instead of
storing a lookup table to decide what action to take at each s∈ S,
one can instead have a function (neural network) f : S→ A
whose size does not scale with |S|. Widely-publicized examples
like chess and Go exhibit large state spaces [60], [61], as do
blockchain incentive mechanisms.

Most blockchain incentive mechanisms have an additional
RL-friendly feature in that rewards are processed continuously.
That is, in chess or Go, rewards are calculated in an all-or-
nothing manner at the end of the game. In blockchains, players
reap rewards incrementally, enabling reward estimation before
the game is complete. This faster feedback makes it easier to
train automated systems to learn effective strategies. As such,
DRL is a natural tool for this problem.

A. Design considerations in deep RL

(1) State space representation. Most blockchains are struc-
tured as a directed acyclic graph (DAG), so a naive state space
representation might be to use the entire DAG as the current
state. This approach has a few problems. First, its dimensionality
grows over time. Second, it includes irrelevant information (e.g.,
old side chains that cannot be displaced with high probability
[22]). We therefore require a representation of the state space
that is general enough to apply to different blockchains, while
being constrained enough to limit the problem dimension.
An important part of SquirRL is our derivation of a general
framework for extracting a compact state space representation
(features) that is general enough to learn meaningful attacks
for different protocols.

(2) Learning algorithm. Two common classes of learning
algorithms are value-based methods and policy gradient methods
[21]. Value-based methods typically aim to build a value
function that associates some value with each state; a common
example is Q-learning [74]. Policy gradient methods instead
try to optimize rewards by performing gradient ascent on

Fig. 1: Schematic of SquirRL learning framework.

a parametric policy, which in our case will be represented
by a neural network [21]. Common examples include the
REINFORCE algorithm [76] and actor-critic methods [66].

We make use of both classes of algorithms in this work,
as different DRL algorithms perform well in different settings.
The most basic algorithm is deep Q-networks (DQNs), which is
based on the classical idea of Q-learning [74]. However, more
sophisticated algorithms (including policy gradient methods)
have surpassed DQNs in many problem areas [34], [57], [79],
sometimes at the expense of higher computational cost.

(3) Reward function. Designing a good reward function can
significantly impact the success of the overall system; often
this requires a combination of domain knowledge and some
tuning of hyperparameters.

(4) Training heuristics and hyperparameters. Some attack
models and/or protocols can be difficult to learn due to
complexity. Leveraging blockchain domain knowledge to design
training heuristics can help DRL agents learn, which we show
in Section VI-A.

IV. SQUIRRL: SYSTEM DESCRIPTION

Figure 1 shows use of the RL-based learning framework
that is the cornerstone of SquirRL. It involves a three-stage
pipeline for discovering and analyzing adversarial strategies
targeting an incentive mechanism M .

First, the protocol designer builds an environment that
simulates execution of the protocol realizing M . We anticipate
that the bulk of the effort involved in the SquirRL framework
will go into this part of the system, as the environment fully
encapsulates a model of M . The protocol designer instantiates
in the environment a set of features (state space representation)
over which learning will occur, as well as a space of actions that
agents may take. (What features to use may be iteratively tuned
to improve performance of the RL algorithm at later stages.)
In parallel, the protocol designer chooses an adversarial model
to explore. We have outlined a principled set of choices in our
discussion of Table I in Section II. Finally, the protocol designer
selects an RL algorithm appropriate for the environment and
adversarial model. She must associate with the RL algorithm a
reward function and hyperparameters, both of which may be
iteratively tuned as exploration proceeds.

In this section, we describe respectively the environments,
adversarial models, and RL algorithms we employ in SquirRL
for the experiments in this paper. We focus on incentive
mechanisms related to block rewards since these have dominated

4

the literature on blockchain incentive mechanism vulnerabilities
[18], [19], [24], [45], [48], [56], but similar ideas can be
applied to transaction rewards, for example. The environment
construction depends on the precise incentive mechanism
(and underlying consensus algorithm), but there is a strong
commonality among our environment designs. In particular,
we describe four aspects of the environment: (1) the block
generation model, (2) the reward function, (3) the action space,
and (4) feature extraction. Of these, the most challenging design
problem is the feature extraction, so we provide a general-
purpose algorithm for choosing a feature extractor given an
action space and a model of the environmental randomness.

A. Blockchain generation

As in prior work [19], [56], we assume a randomized
model for block generation. Hence, we view block generation
as a discrete-time process, where a new block is generated
at each time slot i ≥ 0 (we generalize this assumption in
Section VI-B). In proof-of-work (PoW), a party that controls
fraction α of the network’s mining power mines the ith block
with probability α, independently across all time slots. This
model is easily extended to PoS, where parameters depend on
the block generation mechanism.

In accordance with prior work, we assume that the network
communicates blocks instantaneously to other nodes (we relax
this assumption in Section VII-A). In the event that an agent’s
block is received simultaneously with an honest party’s block,
and both are considered equally viable by the consensus
mechanism M , we assume the honest nodes all follow the
adversarial block with probability γ, and all follow the honest
block with probability 1− γ. We call γ the follower fraction.

B. Rewards

In most chain-based blockchains (e.g., Bitcoin), the miner
of a block that appears in the final ledger receives a block
reward. Like prior work [19], [48], [56], we consider one or
more attackers that aim to maximize their block rewards given
a constrained amount of computational resources; we ignore
transaction fees for simplicity. We define Ba(t,S) and Bo(t,S)
as the rewards of the attacker of interest and all the other miners,
respectively, at time t under an attack strategy S . When there
are multiple attackers of interest, we differentiate them with
superscripts. We compute a miner’s reward by aggregating the
block reward it accumulates, avoiding analysis of uncontrolled
externalities such as coin price or electricity cost.

In practice, miners appear to optimize their absolute reward
rate, defined as limt→∞

Ba(t,S)
t . However, prior work [19],

[56] has mostly focused on relative rewards, defined as the
attacker’s block rewards as a fraction of the whole network’s
rewards: limt→∞

Ba(t,S)
Ba(t,S)+Bo(t,S) . In Appendix A, we show that

over even moderate time periods in the Bitcoin protocol, the
two objectives are interchangeable. We will focus on relative
rewards for many of our results, since this enables direct
comparison with prior work.

C. Action space and adversarial model

There is a close tie between the action space and adversarial
model. DRL requires system designers to specify the action

space, which is informed in part by the type of attacks one
is searching for. Typically, in block-reward-based incentive
mechanisms, we expect an agent to be able to control, at a
minimum, where to append blocks on its local view of the
blockchain, and when to release them.

Example (Bitcoin): We allow agents to take one of four basic
actions, as in [19], [56]. The first is adopt, in which an agent
abandons its private fork to mine on the canonical public chain.
This action is always allowed. The second action is override,
in which an agent publishes just enough blocks from its private
chain to overtake the canonical public chain. This action is
feasible only if the agent’s private chain is strictly longer than
the public main chain. The third action is wait, in which an
agent continues to mine without publishing any blocks. This
action is always feasible. The final action is match, in which an
agent publishes just enough blocks to equal the length of the
longest public chain as the block on the longest public chain is
being published, causing a fork. In [56], the authors prove the
optimality of this action space in single-strategic-agent selfish
mining (i.e., if an action outside of this action space is chosen,
it results in strictly lower rewards).

In addition to specifying the action space, the adversarial
model requires system designers to specify the number of
strategic agents and their relative resources. In our experiments
on selfish mining in Sections V and VI, we explore the numbers
and types of adversaries given in Table I, for example.

The type of each agent i in our various experiments is
specified in part by a (fractional) hash power αi. In our selfish
mining experiments, agent types also include an agent-specific
“follower fraction” γi that specifies the probability that honest
nodes follow a particular agent’s chain in the case of multi-way
ties; this parameter models an agent’s network penetration and
generalizes the previously-described parameter γ.

D. State space representation: Feature extraction

The goal of SquirRL is to find a policy (or strategy) π :
S→ ∆(A), where ∆(A) denotes the probability simplex over
actions in A. We let π(·|s) denote the mapping from a state
s to a distribution over actions. Ideally, we would implement
this π as a lookup table. However, in general, the state space
S is the set of all possible blockDAGs, which is infinite.

The canonical way of solving this problem is with function
approximation [67]; instead of making π a lookup table, we
implement it with a different function. Concretely, for some
d ∈N, let f : Rd→ ∆(A), and ϕ : S→Rd . We then let π(·|s) =
f (ϕ(s)). f is usually chosen to be a neural network. ϕ is called
the feature extraction method, and designing a good ϕ for
blockchains will be the focus of this section.

We write a general framework for specifying ϕ in blockchain
incentive mechanism problems. Our suggestions for how to
construct ϕ may be lossy or redundant in general; however, we
will show that for a variety of blockchain incentive problems, it
can be used by SquirRL to achieve near-optimal performance.

To motivate our procedure, we want to design features that
are descriptive enough to find attacks on protocols. Recall
that in an MDP, the value function V : S→ R is defined as
V (s) := E[∑∞

t=0 ηtRa∗t (st ,st+1)|s0 = s] where a∗t is the optimal

5

action at time step t wrt the entire process starting from time
0 [67]. We want ϕ such that infgEs∼µ[(V (s)−g(ϕ(s)))2]< ε

for some small ε≥ 0, where µ is some distribution over initial
states. Define Wϕ(s) := {s′ : ϕ(s′) = ϕ(s)}. If g(ϕ(s′)) =V (s)
for all s′ ∈W (s), then it is clear that ε = 0. This suggests a
procedure for choosing ϕ: choose it so that states s that map
to the same value of ϕ(s) have the same V (s) (or close to the
same value). In other words, we want to find the features of s,
ϕ(s) that determine V (s) relatively closely. Then our optimal
value approximator ĝ would simply be V ϕ−1, where the inverse
maps to any state in the pre-image of ϕ.

Once we define a suitable ϕ, we can either rely on DQNs
to learn ĝ directly (which in turn gives a policy), or we can
use policy gradient methods to directly learn a strategy that
operates on the features ϕ(s).

We assume that some subset of blocks in each state s belongs
to the agent. In most blockchains, the value of the state V (s)
is determined by a few properties: (1) score: how likely is a
protocol to choose the agent’s subset as the canonical one?
(2) instantaneous reward: how much reward would the agent
receive if its subset is chosen? (3) permitted actions: what
actions are allowed in a given state? Note that to estimate the
value function, an agent should track these quantities both for
its own blocks and for the visible blocks of the other players.

1) Score: Given a blockDAG T , the score of a connected
subgraph C ⊆ T determines C’s chance of being selected as
the canonical subgraph, i.e., the subgraph on which honest
nodes build. The score of subgraph C can also depend
on observable environmental variables E = (e1, . . . ,em). For
example, these could represent an agent’s level of resource
allocation. Hence, we define score function L(C,T,E) as a
mapping from (C,T,E) to a r-dimensional vector. We propose
to let ϕ(s)[1 : r] = L(C,T,E), where we use array notation to
show that the first r dimensions of the features are the score.

Example (Bitcoin, Ethereum, Fruitchains): In these protocols,
the fork with the longest length is adopted as the canonical
chain. So L(C,T,E) = [len(C),H] where len(C) is the length
from the last globally accepted block and the block that the
agent is currently mining on, and H is the length of the longest
public chain from the last globally-accepted block.

Example (GHOST [64]): GHOST chooses the heaviest subtree
at each node to arrive at a canonical chain. Let G be the
set of nodes that GHOST would traverse by choosing the
heaviest weighted subtree at each node (starting from the last
globally accepted block), assuming that all blocks were known
to GHOST, including any of the agent’s unpublished blocks.
Then we can let L(C,T,E) = [|G∩C|, |G|].

Example (Casper FFG + Ethereum): Two things impact
the likelihood of a chain becoming the canonical chain in
this protocol: its length, and the proportion of the votes that
it has received. So L(C,T,E) = [len(C),H,v] where v is the
proportion of votes that the agent has received so far for a
checkpoint on its chain.

2) Instantaneous reward: Blockchain protocols vary in
block reward allocation schemes, ranging from rewarding only
longest-chain blocks (e.g., Bitcoin, GHOST), to uncle-based
rewards (e.g., Ethereum [78], Fruitchains [53]). These reward

mechanisms directly impact the values of a state, so they must
also be part of feature extraction.

One commonality among block reward schemes is that
they are awarded on a per-unit basis for some unit (blocks,
fruits, uncles, etc.). Define U(s) as the set of units that are
relevant to the agent in the current state. Then define the
features of these units (e.g. how recently they were mined,
their reward content, etc) as feat(U(s)), where the dimension of
feat(U(s)) is r′ ∈N. We propose to include these features in our
feature mapping ϕ. Concretely, we let ϕ(s)[1 : r] = L(C,T,E)
and ϕ(s)[r+1 : r+ r′+1] = feat(U(s)).

In general, this can give a high-dimensional feature mapping,
which will cause training to be hard. However, in many
protocols, feat(U(s)) can be very low-dimensional, as we
demonstrate in the following example.

Example (Bitcoin): Block rewards in Bitcoin are awarded
equally to every block on the canonical chain. Therefore,
for a selfish miner in the single-agent setting, feat(U(s)) =
[∑B∈C1{B /∈M}] = [len(C)], where M is the established canon-
ical chain and B is a block.

3) Permitted actions: From a given state s, an agent may
only be allowed to take a subset of actions in A, which influences
s’s value. For instance, in [56], an agent can only match (i.e.
cause a tie between two longest chains) if it already had an
unpublished block at the same height as a block the honest
party publishes.

We define permitted actions as a binary array act(s) ∈
{0,1}|A| where |A| is the size of the action space. act(s)[i] = 1
if the ith action is available at state s and 0 otherwise. We
propose to have ϕ(s)[r+r′+2 : r+r′+2+ |A|] = act(s). While
|A| is usually small, it can sometimes be compressed.

Example (Bitcoin): With the score features from both the
honest party and the strategic agent, as well as observed
environmental variables, we can completely determine the
permitted actions of a state. Define an environmental variable
f ork ∈ {relevant,irrelevant,active}, which describes
the most recent event in the system [19], [56]. f ork= relevant
if an honest node just mined a block. f ork = active if the
agent just tried to match another party’s block; in this case,
recall that the environment chooses the agent’s block over
the honest one w.p. γ. Otherwise, f ork = irrelevant. [56]
showed that these three features are sufficient for determining
the permitted actions of a state. Because we are already storing
scores, we only need one additional feature, f ork, in place of
the permitted actions array.

The described Bitcoin feature mapping matches the feature
mapping in [56] and was shown in [56] to achieve ε = 0. In
other words, policy iteration was able to find a g such that
g(ϕ(s)) =V (s) for all s. Therefore, in this case, our procedure
found a sufficiently descriptive feature mapping. We provide an
instantiation for Ethereum in Appendix B, and demonstrate the
features’ sufficiency empirically by surpassing state-of-the-art
selfish mining rewards for Ethereum.

In all of our feature extractor instantiations, we implement
a block limit to bound the maximum block sequence length.

Definition 1. (Block limit of B) We say that we run an
experiment with a block limit of B if the following is true:

6

Attack type Feature space Action space

Selfish mining (Bitcoin) [2]× [B]2 [3]
Selfish mining (Ethereum) [2]6× [B]2 [3]
Selfish mining + voting (Casper FFG) [2]× [2]× [B]3×R×R [5]
Block withholding (Bitcoin) 0 R

TABLE II: Dimensionality of the feature and action spaces. B
is the block limit, from Definition 1. Let [x], {0, . . . ,x}, and
R the real numbers.

When the length of the longest public chain from the last
global consensus block is ≥ B, or the length of the agent’s
private chain from the last global consensus block is ≥ B,
then the attacker must publish its private chain or adopt the
longest public chain. The attacker publishes its private chain
if its private chain is longer than the longest public chain, and
adopts the longest public chain otherwise.

Table II gives the feature space and action space dimen-
sionality for the attacks studied in this paper. These are derived
from the feature space extraction functions in Section IV-D.
Note that more complex attacks like the fork-after-withholding
(FAW) attack [35] have comparable dimensionalities for the
feature and action spaces. The FAW attack can be described
as selfish mining, except the agent may have p+ 1 separate
private chains (one for each pool), and blocks mined as part of
a pool have their rewards shared with the pool. In light of this,
it’s clear that the feature space will include an extra [B]p factor,
since the attacker must keep track of its private chains for each
pool. Next, the agent also faces selfish mining decisions for
each pool, as well as decisions on how much hash power to
infiltrate each pool, which gives the action space size 4p×|R|p.
As p is usually a small constant ≤ 3 [35], this is unlikely to
significantly affect feasibility.

Note: The above modeling process requires domain knowl-
edge to specify feasible classes of attacks; this may limit the
generality of the approach. However, (a) within an attack class,
SquirRL can help identify attack policies, which is difficult in
general, and (b) once we identify a feasible set of attack classes,
composing different types of attacks becomes easy (for instance,
selfish mining composed with voting attacks on Casper FFG,
which we detail in Section VII-A). This approach subsumes
the attack-by-attack approach typically employed today.

Operationally, those searching for new attack classes will
have to define a new feature extraction function. The more
carefully one defines this function, the smaller of a search space
the RL agent will have to explore, and the more performant
the agent will be. Hence, there is a tradeoff between feature
compactness and completeness for the RL agent.

E. Order of operations

An important adjunct to design of the action space and
feature extraction is a policy for sequencing agents’ actions
and disseminating rewards. In our environment, we enforce
three properties that are motivated by our problem domain:

(1) Synchronous action selection. We assume all actions of
strategic agents are recorded synchronously, after seeing the
actions of the honest party (if it exists). This is needed to
prevent the adversary from observing the actions of other

strategic players and reacting accordingly; in this case, the
last strategic agent to choose its action would have an unfair
advantage. However, we do allow for a rushing adversary who
sees the honest party’s actions before deciding how to act,
consistent with [45], [56]. In Section VI-B, we illustrate how
this assumption breaks down in the multi-agent setting.

(2) Delayed execution of passive behavior. Once actions are
recorded, we must apply them in some order. We have chosen
always to apply the "passive" action last. To see why, consider
the following scenario: In Bitcoin, suppose an honest agent is
mining on the public chain in the presence of two strategic
players, Alice and Bob. Now suppose Alice overrides and Bob
adopts (i.e., takes the passive action). We know that actions
are collected synchronously, but if they were also processed
synchronously, Alice’s chain would become the main chain,
while Bob would have adopted the previous main chain, which
is now stale. This behavior is unrealistic because a strategic
Bob would choose to mine on Alice’s override block if it were
to abandon its private chain.

(3) Delayed multi-agent rewards. In the multi-agent setting,
rewards should not be immediately allocated following an
override or adopt action. Unlike the single-agent setting, there is
still a possibility of the strategic party’s chain being overridden
by another strategic party. Hence, we only allocate a block
reward if all agents acknowledge the block, i.e., adopt it.

F. RL algorithm

We employ different deep reinforcement learning algorithms,
depending on the adversarial model. In the single agent setting,
we use Deep Dueling Q-Networks (DDQN) [70] and in the
multiple agent setting, we use Proximal Policy Optimization
(PPO) [57]. In our experiments, we have found that DDQN
converges faster than PPO in the single agent setting for Bitcoin:
with a block limit of 5, α = 0.4, γ = 0, DDQN converges in
roughly 105 steps in the environment, while PPO takes an order
of magnitude more steps to converge.

However, DDQN can fail when there are multiple adaptive
agents because the Markov assumption no longer holds. Al-
though PPO is not immune to this problem, it has been used
successfully for multi-agent games [6], [7], [52], and we found
it to be more stable than the alternatives in the multi-agent
setting.

G. Implementation

We used OpenAI Gym [10] to construct our environments
and execute RL algorithms on them. OpenAI Gym provides a
generic interface for implementing environments. In our case,
this environment specifies a model for the target incentive
mechanism M . The environments we have implemented
provide a template for users to easily instantiate their own
blockchain protocols (namely, blockchain structures ranging
from pure chains to generic DAGs). We use the RLLib [39]
training interface to train our agents on state-of-the-art RL al-
gorithms and list the relevant hyperparameters for the following
experiments. These experiments were run on 20 computational
nodes, each equipped with a Quadro P2000 GPU. Similar nodes
cost $0.52/hr to rent on Amazon Web Services in 2020, at the
time of writing [1].1

1Our implementation can be found at https://github.com/wuwuz/SquirRL.

7

Fig. 2: Sample state for Bitcoin. Sub-
chain Ch (blue solid blocks) denotes the
public (honest) main chain, and subchain
Ca (black striped blocks) denotes the
agent’s private chain.

0.0 0.1 0.2 0.3 0.4 0.5
Attacker's Hash Power

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Re
wa

rd

SquirRL
OSM
SM1
honest

0.320.340.360.380.400.420.44
0.40

0.45

0.50

0.55

0.60

0.65

0.70

Fig. 3: Bitcoin relative reward as a function
of adversarial hash power. SquirRL recovers
the findings of [56].

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Standard Deviation of Gaussian Process

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Re
la

tiv
e

Re
wa

rd

SquirRL
OSM
SM1
honest

Fig. 4: Bitcoin relative reward under
stochastic α (Gaussian random process with
E[α] = 0.4).

V. EVALUATION: SINGLE STRATEGIC AGENT

We first consider applications of SquirRL to selfish mining
attacks when there is a single strategic agent, and the remaining
agent(s) follow protocol [19], [48], [56]. We will focus here
on the Bitcoin protocol; analogous experiments on Ethereum
can be found in Appendix B. In our first batch of experiments,
the main benefit of DRL over algorithms for solving MDPs
(e.g., value iteration) is that DRL can handle larger state spaces.
We then demonstrate that DRL learns good strategies in a
stochastically varying environment of unknown distribution,
which is not possible with an MDP. These experiments lay the
groundwork for Section VI, where we describe experiments
with multiple strategic selfish mining parties. Our experiments
compare to several baseline mining strategies:

(1) Honest mining: a miner who follows protocol.

(2) Optimal selfish mining (OSM): the strategy learned in
[56] for the Bitcoin protocol.

(3) SM1: the selfish mining strategy originally proposed in
[19]; although this baseline should be strictly dominated by
OSM in the Bitcoin setting, it has been used in other settings
as well [51]; we include it for completeness.

(4) SquirRL: the strategies output by our training pipeline.

In each of our experiments, we train a DRL agent and
simulate all baseline strategies to compete. Then, for a given
parameter setting (e.g., initial adversarial party’s fraction of hash
power α), we run 100 trials of each blockchain protocol, where
each trial consists of 10000 steps in the MDP and generates at
least 5000 blocks in the main chain. We compute the relevant
parties’ rewards for each trial, and average over all trials.

A. Static Hash Power

The Bitcoin protocol is a useful case study in part because
its incentive mechanism is well-studied [18], [19], [48], [56].
Prior work has recovered an optimal selfish mining strategy in
the one-strategic-agent case when hash power is static [56]. A
useful sanity check is thus to see if SquirRL recovers these
known optimal results. In [56], the authors recover the optimal
strategy for selfish mining in Bitcoin by casting the problem
as an MDP and applying policy iteration. We aim to recover
and replicate two key findings of their work:

(1) Selfish mining is only profitable for adversaries who hold
at least 25% of the stake in the system; this assumes that if the
adversary publishes a block at the same time and height as the
honest chain, the honest nodes will build on the adversary’s
block with probability γ = 0.5. An adversary who holds less
than 25% of the stake should revert to honest mining.

(2) For adversaries with more than 25% of the stake, the authors
of [56] show performance curves that quantify the adversary’s
relative increase in rewards compared to honest mining. Our
goal is to match these curves.

Figure 3 demonstrates the outcome of this experiment, using
the state space developed in section IV-D. We observe two key
findings. First, for α < 0.25, SquirRL does not adopt a ’selfish
mining’ strategy, but recovers the honest mining strategy. This
sanity check is consistent with the theoretical findings of [56].
Second, for α > 0.25, we find that SquirRL achieves a relative
reward within 1% of the true optimal mechanism. This result
required minimal tuning of hyperparameters.

We find similar results for the Ethereum blockchain in
Appendix B. Ethereum’s larger state space (more complex
reward mechanism) makes it poorly-suited to value iteration.
Here, SquirRL easily recovers strategies with higher rewards
than state-of-the-art approaches [24], [51], [54].

B. Variable Hash Power

In the previous experiments (Bitcoin, Ethereum), it is
possible to write an MDP approximating the system dynamics
(even if the state space is large). In more realistic blockchain
settings, the underlying MDP may be changing over time or
unknown. In this section we explore such a scenario, where
the adversary’s hash power α changes stochastically over time.
This can happen, for instance, if the adversary maintains a fixed
amount of hash power (in megahashes/day) while the total hash
power in the cryptocurrency fluctuates, or if miners dynamically
re-allocate hash power over time to different blockchains [32],
[47]. In either scenario, formulating an MDP is challenging for
two reasons: (1) We may not know the distribution of random
process α(t); (2) Even if we can estimate it (e.g. from historical
data), incorporating this continuous random process into an
MDP would bloat the feature space.

SquirRL handles this uncertainty by using the current value
of α during training without any knowledge of the underlying

8

Strategy

Name Honest SM1 OSM SquirRL

Bitcoin 0.398 ± 0.008 0.540 ± 0.016 0.566 ± 0.018 0.585 ± 0.019
Monacoin 0.407 ± 0.007 0.552 ± 0.017 0.594 ± 0.020 0.602 ± 0.020
Vertcoin 0.406 ± 0.007 0.554 ± 0.014 0.597 ± 0.020 0.602 ± 0.020
Litecoin 0.408 ± 0.007 0.564 ± 0.016 0.603 ± 0.019 0.608 ± 0.022

TABLE III: Relative rewards under stochastic α as measured
in real cryptocurrencies from September 24-October 28, 2019.
Results shown for initial α = 0.4. We show the average and
the standard deviation results for 100 repetitions.

random process. We find that SquirRL learns more robust
strategies than those in the literature and is therefore less likely
to overreact to outlying values.

We evaluate performance for stochastic α by first allowing
α(t) to vary according to a Gaussian white noise random
process with E[α(t)] = 0.4, in line with major cryptocurrency
mining pools’ fractional hash powers [2]. Figure 4 illustrates
the relative reward as a function of the standard deviation
of this process. We truncate fluctuations to α≤ 0.5 to avoid
51% attacks. When α(t) has low variance, our results are
consistent with those from Section V-A: SquirRL achieves
relative rewards close but not identical to OSM. However, as
the variance increases, SquirRL actually starts to outperform
OSM. Intuitively, the learned strategies are less likely to react
to fluctuations in α(t), thereby preventing the agent from taking
extreme actions for anomalous events. We would consequently
expect SquirRL to perform particularly well on blockchains
with low (and hence more volatile) total hash power.

To explore the effect of stochastic α in the wild, we ran
SquirRL on data from real cryptocurrencies. We first scraped
the estimated total hash power hourly for a month for four
blockchains that use Bitcoin’s consensus protocol and block
reward mechanism: Bitcoin, Litecoin, Monacoin, and Vertcoin—
we include the latter three to demonstrate the generality of
the framework. We trained SquirRL in an environment where
α(t) followed a Gaussian white noise random process with
standard deviation 0.1. We chose this parameter after observing
that the average deviation between consecutive hash power
measurements (measured every three hours over a month) in
all four cryptocurrencies were below 0.1. We then assumed an
attacker with constant raw hash power (in MH/day); this raw
hash power is chosen by initializing the attacker at a relative
hash power of α = 0.4 in each measured blockchain. Once the
absolute hash power is fixed, the attacker’s relative hash power
α fluctuates solely due to changes in the total hash power of
each blockchain. Table III shows the relative rewards resulting
from various strategies. SquirRL achieves the highest relative
rewards (although within statistical error of OSM), showing
RL’s benefits in environments that change in ways difficult to
capture with an MDP.

VI. MULTI-AGENT SELFISH MINING EVALUATION

The previous section demonstrated the ability of SquirRL
to (a) learn a known optimal strategy for Bitcoin, (b) extend
prior state-of-the-art results on Ethereum in a setting where
the state space is too large for an MDP solver, and (c) learn
strategies in a stochastic, possibly nonstationary environment.

In this section, we instead demonstrate DRL’s ability to
handle nonstationary environments in which multiple strategic
agents are competing in the Bitcoin selfish mining scenario.
This section has three main findings. In a multi-strategic-
agent setting: (1) OSM is not a Nash equilibrium. (2) The
commonly-studied rushing adversary can have counterintuitive
and nonphysical results. This has general implications for how
the research community should model multi-agent security
problems moving forward. (3) We do not observe any benefit
to selfish mining when k ≥ 3 strategic agents are competing.
This suggests that even over an infinite time horizon, selfish
mining is not a serious attack for the Bitcoin protocol.

A. Model

We generalize the model from Section IV. Recall that for a
single strategic agent, we used γ to denote the probability of the
honest party choosing an adversarial block over an honest one
in the event of a match. For the multi-agent setting, we instead
define the follower fraction γi, which we briefly described
above. For i ∈ {1, . . . ,k}, γi is the probability of the honest
agent building on the ith agent’s block in case of a k-way tie.
This models each party’s network connectivity. In case of a tie
among fewer parties, the γi values are normalized appropriately.

The multi-agent setting requires a different abstraction than
MDPs: Partially Observed Markov Game (POMG) [81]. A
POMG is a tuple (N,S,{Ai}1≤i≤N ,P,{Ri}1≤i≤N ,Ω,{Oi}1≤i≤N),
where N denotes the number of agents, S is the state space
for all the agents, Ai is the action space for agent i, P : S×
A1×·· ·×AN×S→ R denotes the transition probability from
a state s ∈ S to s′ ∈ S given joint action a ∈ A1× ·· · ×AN ,
Ri : S×A1×·· ·×AN×S→ R is the reward function for agent
i that determines the immediate reward transitioning from state
s ∈ S to state s′ ∈ S with joint action a ∈ A1×·· ·×AN , Ω is
the space of observations, and Oi : S→Ω maps the state to the
observation that agent i sees.

In our setting, S is the space of all possible blocktrees. Ai =A
for all i, where A was the action space from the single-strategic-
agent setting. Ri(s,a,s′) = (1−αi)xi −αiyi where xi is the
number of blocks agent i received in the process of transitioning
from s ∈ S to s′ ∈ S with joint action a ∈ A1×·· ·×AN , and yi
is the number of blocks all agents other than i (including the
honest agent) received in the process of transitioning. Ω is the
space of blocktrees except without the hidden chains included.
Oi(s) is the blocktree observed by agent i (note that we use
feature extraction as before, except applied to the observations,
to simplify this representation).

But what is N? It should include all of the strategic agents,
of course, but should it include the honest party? In [19], [56]
(which study the single-agent setting) the honest party is treated
as part of the environment and accounted for in the probability
transition matrix and in the reward matrix. In recent work
on multi-agent selfish mining [45], the honest party is also
considered to be a part of the environment.

Consider a POMG with honest party A and strategic agents
B and C. If the honest party is in the environment, then upon
receiving the joint observation o ∈Ω2, agents B and C submit
the joint action a ∈ A2. After the actions are submitted, a block
is awarded to one of A,B,C and A performs an action (notably,
before B and C perform any more actions or observe anything).

9

Rewards are given to the agents. Then agents receive another
observation o ∈ Ω2, and the cycle repeats. Notice that even
in the DRL literature, it is standard to represent agents with
known strategies as part of the environment [41], [52].

If A is outside of the environment (i.e., included as an agent),
then upon receiving the joint observation o∈Ω3, agents A,B,C
submit joint action a ∈ A3. After actions are submitted, a block
is awarded to one of the parties and rewards are allocated.
Then the cycle repeats. The difference is in when the strategic
agents can see the hidden state of A: when A was part of the
environment, A never had a hidden chain because it publishes
while the POMG processes the transition. When A is considered
an agent, it doesn’t publish its block until the next turn, which
means its hidden chain length could be nonzero in length.

As we are interested in studying worst-case security, it is
tempting to think that giving B,C more information is a more
conservative choice, thus implementing the honest party as
part of the environment. We start with this assumption to be
consistent with [45], [56]. However, we show in Section VI-B
that this decision can lead to counterintuitive results.

Training Methodology. As a starting point, our models are
trained using PPO using the default configurations in [39] for
532000 episodes, with a batch size of 524288 steps. We will
detail the training methodology inline for later experiments.
This large batch size is typical of RL applications, such as
OpenAI Five [52]. Each episode in our experiments consists of
100 block creation events. Each error bar depicts the largest,
middle, and smallest of 3 data points. Each of these data points
is the average of 100,000 episodes.

B. Challenges of modeling a rushing adversary

We start by asking if OSM is a NE for multiple strategic
agents. If OSM is a NE, we don’t need SquirRL—learning
the best strategy for a single strategic agent is enough, at least
for Bitcoin. Consider three agents: A is honest, B is running
OSM, and C is using DRL. We compare this to a setting where
both agents B and C are using OSM. Note that this setup
encompasses settings where A has no hash power.

Figure 5 shows Agent C’s excess relative rewards (an agent’s
relative reward minus its hash power) when agents B and
C each have a fraction α ≤ 0.5 of the hash power, and the
honest agent has a 1−2α fraction; we use follower fractions
γB = γC = 0.5. Agent C always does better with SquirRL than
with OSM, suggesting that OSM is not a NE with multiple
agents. However, Figure 5 exhibits two surprising features that
require further examination before drawing such conclusions.

First, notice the non-smoothness in Figure 5. This is an
artifact of the OSM strategies solved in [56]. For hash powers
between 0.15 and 0.3, OSM learns one of multiple strategies
that are functionally equivalent in the single-agent setting.
Due to randomness in policy iteration, the solver may choose
different strategies for different hash powers, but they all have
the same relative reward [56]. In our setting, these choices
are not equivalent, and can lead to different rewards for the
OSM agent. This effect causes the non-smoothness in Figure 5,
but does not indicate incorrect results. The precise simulation
outcome that causes this effect is included in Appendix C.

Second, Figure 5 shows a counterintuitive effect: the excess
relative rewards of SquirRL can be negative; e.g., at hash power
0.2, our agent performs slightly worse than the honest agent.
Although we cannot guarantee SquirRL’s optimality, we observe
that even if our agent uses the honest strategy, its rewards are
still lower than those of the honest agent.

This is happening because to model a worst-case rushing
adversary, we implemented the honest agent as part of the
environment, as is standard in prior work [19], [45], [56]. Even
if the strategic agent uses the honest strategy, it is constrained
to choose its actions after the honest agent, which leads to
diminished rewards. Therefore, unlike in the single-agent setting,
a rushing adversary in a multi-agent setting can actually perform
worse than the honest party!

Although this phenomenon may seem like an artifact of our
timing model, we find that it applies more generally to multi-
agent games with incomplete information. Consider a game
between A, B, and C, where each player must vote for an option
in the set {0,1}, and agent A (our “honest" agent) always votes
randomly. Suppose B and C know A’s vote vA (i.e., a rushing
model), and suppose C’s final reward is equal to the number of
votes for the winning option, i.e. maxi∈{0,1}∑x∈{A,B,C}1{vx = i}.
Now if B employs a strategy where it always votes for 1− vA,
C’s reward is always 2. On the other hand, if A’s vote is not
visible to the other agents, then C’s expected reward under
an optimal strategy is strictly larger; with probability 1/4, all
agents will choose the same option, giving a reward of 3.

Hence, in general, a rushing adversary can lead to a strictly
lower expected reward for one of the agents. Coming back
to the selfish mining setting, this suggests that the rushing
adversary model we (and others) posed may not be appropriate
for multi-strategic-agent settings. An attacker should be able
to mimic honest behavior perfectly, but the rushing adversary
model does not allow attackers in the multi-agent setting to
do that. This observation could be of broader interest to the
security community as the empirical and theoretical analysis
of multi-agent systems becomes more widespread [26], [33].

a) Solutions: Our findings suggest that honest agents
should not necessarily be implemented as part of the environ-
ment. Moving them outside the environment at least allows
strategic parties to mimic honest strategies as they are defined
within the model. However, simply moving the honest agent
out of the environment poses new challenges, by preventing
agents from being able to react to honest actions. In reality,
block propagation times are generally much faster than block
mining speeds [16], so strategic miners should have time to
react to published blocks before the next block is released. Not
allowing this makes it difficult to extract excess rewards.

To incorporate both constraints, we make two modeling
choices that are a notable departure from prior literature (1) we
model the honest party as an agent with a fixed strategy outside
the environment (2) instead of assuming a block is mined at
every time slot, we have a block mining event every m turns
(in our experiments, we let m = 4; m = 2 suffices to avoid the
rushing adversary issue, but we show results with m = 4 to
illustrate a more realistic setting where agents may take multiple
sequential actions between block mining events. The honest
party will always act in the turn following a block mining
event, giving attackers time to react before the next block is

10

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.03

0.02

0.01

0.00

0.01

0.02

SquirRL (vs OSM)
OSM (vs OSM)

R
el

at
iv

e
re

w
ar

d
-

α

Attacker hash power α

Fig. 5: SquirRL gives equal or higher rela-
tive rewards compared to OSM; however,
excess relative rewards can be negative.

0.1 0.2 0.3 0.4 0.5

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040 SquirRL (vs OSM)
OSM (vs OSM)

R
el

at
iv

e
re

w
ar

d
-

α

Attacker hash power α

Fig. 6: We can alleviate the problems with
the rushing adversary (Figure 5) by using
our more realistic model.

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.01

0.02

0.03

0.04
2 SquirRL agents
3 SquirRL agents

R
el

at
iv

e
re

w
ar

d
-

α

Per-attacker hash power α

Fig. 7: In the multi-agent setting, we ob-
serve no gains from selfish mining in the
presence of three parties.

mined. We refer to this as the "time-segmentation model". This
changes the POMG: the state space S now includes "time",
and so does the observation space Ω. Furthermore, Oi(s), the
observation agent i sees at state s also includes the time.

Training Methodology. The more realistic model introduces
a substantial new difficulty to the training process: a longer
time horizon over which to optimize. With sparser block
mining events, the agent must learn to plan. This is a widely-
acknowledged difficulty in DRL [52], and simply running the
default PPO configuration from RLlib produces poor results. To
combat this difficulty, we leverage the existing structure in the
problem to modify the training methodology. Our modifications
are as follows:

• Train for longer: approximately 2M episodes
• Anneal m from 0 to the desired value of 4, increasing m

by 1 every 500K steps.
• We want to detect vulnerabilities, so we bias the
agents towards selfish mining by adding a bonus of
0.1 ·max(2M− total episodes,0)/2M if the agent waits
between episode 500K and 1.6M. In general, biasing
agents towards dishonest behavior is a good choice when
analyzing the security of a system.
• At environment initialization, we run OSM agents in

place of SquirRL agents in the game for a random number
of block creation events. Then we use this leftover state
as the initial episode state. It is not necessary to use the
OSM strategy for initialization; any initialization of states
that gives sufficient coverage over all states suffices [3].
• Set the discount factor η = 0.997 rather than η = 0.99

to increase the incentive for the agent to plan ahead.
• Batch size of 1048576 steps.

In Sections VI-C and VI-D, we demonstrate that we obtain
physically realistic results under our new modeling choices, in
addition to obtaining other novel results.

C. OSM is not a Nash equilibrium

We apply this new time-segmented, non-rushing model to
obtain Figure 6. We now observe the more physically realistic
result that when Agent C is instantiated with SquirRL or OSM,
it always outperforms honest agents, unlike in the previous
model. Notice that as α→ 0.5, the excess relative reward tends

to zero because the honest party’s hash power tends to 0, so
there is less excess reward to claim.

Furthermore, in a competition with OSM, agent C does better
using DRL (blue line) than OSM (orange line). This implies
that OSM is not actually a NE. In other words, the approach of
[45] to analyze restricted strategy sets is not sufficient. If we
had restricted agents to either honest mine or to follow OSM,
then we might have (incorrectly) concluded from Figure 6’s
orange line that OSM is a NE, similarly to how [45] concludes
that semi-selfish mining is a NE.

D. Selfish mining may be unprofitable with k = 3 agents

Our next experiments involve training multiple strategic
agents against one another in a selfish mining game under
the time-segmented, non-rushing model. Notice that these
experiments can only be run with DRL, as the environment
is both unknown and dynamic. We highlight one observation
from Figure 7: with three adaptive strategic agents, the agents
could not achieve reward better than honest mining.

Notice that the training modifications we detailed in Sub-
section VI-A all bias our agents to behave more selfishly.
In addition, we let γi = 1/3 for all i, the maximum possible
follower fraction: however, the equilibrium the agents settle
on is honest mining. Figure 13 illustrates in solid lines the
relative reward of each agent minus its hash power (α= 0.1733)
and in dotted lines the fraction of match actions, which is a
proxy for the agent’s strategy. Matching more often is a more
aggressive strategy; the honest strategy never matches. When
agents deviate from the honest strategy by matching more (e.g.,
agent 2 around iteration 100), they lose reward and quickly
revert to an honest strategy. These experiments suggest (but do
not prove) that honest mining is a Nash equilibrium for k = 3
strategic symmetric agents. Note this does not imply anything
for asymmetric agents. For example, consider agent A with
0.001% hash power, agent B with 0.001% hash power, and
agent C with 40% hash power, with the rest going to the honest
party. This effectively reduces to single-agent selfish mining
with 40% attacker hash power, for which honest mining is not
a Nash equilibrium, as demonstrated in [56] and Section V. We
leave the exploration of asymmetric agents to future work.

11

0.000
0.033

0.066
0.099

0.132
0.165

0.198
0.231

0.264
0.297

0.330

Attacker's Mining Power / Voting Power

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Re
la

tiv
e

Re
wa

rd

Honest
SM1+Honest Voting
OSM+Honest Voting
SquirRL

0.26 0.28 0.30 0.32 0.34
0.26

0.28

0.30

0.32

0.34

0.36

0.38

Fig. 8: Total relative reward, including
both voting and mining rewards.

0.000
0.033

0.066
0.099

0.132
0.165

0.198
0.231

0.264
0.297

0.330

Attacker's Mining Power / Voting Power

0.0

0.1

0.2

0.3

0.4

Vo
tin

g
Re

wa
rd

 F
ra

ct
io

n

Honest
SM1+Honest Voting
OSM+Honest Voting
SquirRL

Fig. 9: Relative reward from Casper FFG
(not including mining rewards).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
P2's Hash Power m2

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

In
fil

tra
tin

g
ha

sh
ra

te

RL-x1
NE-x1
RL-x2
NE-x2

Fig. 10: Policies of NE vs RL. P1’s hash
rate m1 = 0.1, and Pi uses hash power xi
to infiltrate the other pool.

VII. BEYOND SELFISH MINING

We have thus far focused on selfish mining attacks. To show
the general applicability of SquirRL, we apply it to two problems
that are not selfish mining: voting-based finality protocols [11]
and block withholding [18].

A. Casper the Friendly Finality Gadget (FFG)

In this section, we demonstrate a novel attack on the
Ethereum blockchain’s planned finalization protocol, called
Casper the Friendly Finality Gadget (FFG) [11]. Casper FFG is a
proof-of-stake (PoS), voting-based protocol for finalizing blocks
in proof-of-work (PoW) blockchains. Casper FFG includes an
incentive mechanism to ensure that participating nodes, or
validators do not deviate from the desired behavior. Our goal is
to use SquirRL to exploit these incentive mechanisms to amplify
an agent’s reward and/or subvert the integrity of the voting
process. Our attack illustrates how an agent can combine PoW
selfish mining with PoS strategic voting to amplify her own
rewards. To the best of our knowledge, this is the first attack
to combine selfish mining with strategic voting in Byzantine
fault-tolerant (BFT)-style protocols. These experiments cannot
be solved with value/policy iteration because the state space is
continuous.

Casper FFG validators are meant to finalize the first block (or
checkpoint) of every epoch, defined as a chunk of consecutive
` blocks on the same chain. Finalization occurs via voting.
When a checkpoint receives more than 2/3 of the votes, it is
justified. Here, the votes are weighted by the voters’ deposits.
If multiple checkpoints exist at the same height, a validator
should vote for the checkpoint on the longer chain. If two
consecutive checkpoints on the same chain are justified, the
first checkpoint is finalized and it will remain in the canonical
chain forever. A chain that does not include every finalized
checkpoint in the system is considered invalid, even if it is the
longest (greatest-work) chain in the system.

The Casper FFG incentive mechanism is designed to ensure
that validators (a) participate in every epoch’s voting protocol,
and (b) vote for the same checkpoint if multiple options exist.
To achieve this, each validator v makes a deposit Dv into a
smart contract on the Ethereum chain to join the validator pool.
Roughly, if a checkpoint c at height h(c) is finalized, then all
the voters who voted for c see their deposit grow, whereas any

voters who voted for a different checkpoint c′ with h(c′) = h(c)
will see their deposit shrink.

We implement a simplified version of the Casper FFG
incentive mechanism and voting process that captures the
essence of the protocol. At any given time step, we model
the voting process as either active or inactive. If the voting
process is inactive, then the actions and state transitions are
the same as in selfish mining. If the voting process is active,
then the attacker can choose: (1) to vote, in which case it
allocates all of its votes to its own fork, (2) to publish blocks,
in which case the transitions mimic those in the selfish mining
setting, or (3) to wait and continue mining without taking any
publicly-facing actions. While the attacker is waiting, honest
validators can vote for a checkpoint. In practice, validators
will not vote simultaneously; we model this heterogeneity by
staggering the honest votes according to a random process. In
a given time slot, with probability pvote the honest parties
randomly choose a longest chain to vote for. We allocate
to this longest chain a proportion of honest votes equal to
min(max(X ,0),1−β− vh), where X ∼N (0.1,0.05), vh is the
total proportion of votes already allocated by the honest parties,
and β is the proportion of total votes available that are under
the control of the attacker. In other words, we choose a random
fraction of the remaining, uncast honest votes and allocate them
to the checkpoint on the current longest chain. The random
vote allocation distribution reflects the non-uniformity of block
propagation in the blockchain. With probability 1− pvote, a
block is generated by a miner and the block structure changes
according to the selfish mining setting. The voting process is
active at the beginning of any epoch. It becomes inactive if (1)
one checkpoint receives more than 2/3 of the votes (2) one
chain containing a checkpoint becomes the canonical chain
through selfish mining transitions—for instance, if the attacker
chooses to adopt the honest chain.

Block rewards are calculated as follows: miners get one unit
of reward for every block that ends up on the canonical chain.
Voting rewards are calculated (roughly) as in Casper FFG,
with the validator deposit Dv scaled appropriately to reflect
the ratio of real-world deposit magnitudes to block rewards.
The differences between our modeling assumptions and the full
scheme are detailed in Appendix D.

Results. As the agent’s voting and mining power increases,
SquirRL learns to exploit the penalty for incorrect voting to

12

penalize the honest party. A common attack strategy discovered
by SquirRL is as follows. First, the SquirRL agent accumulates
and hides two checkpoints, c′ → c′′, through selfish mining.
When the honest party releases a checkpoint c, the agent
immediately releases c′ and triggers a competing voting process.
The agent then waits until the honest checkpoint c accumulates
close to (but not above) 1/3 votes. The agent then releases
c′′, causing checkpoint c′ to be included in a longer chain
than c. The remaining voters will vote for c′ according to the
voting rule and c′ will be justified. The honest voters for c are
penalized, amplifying the agent’s relative reward.

Figure 8 shows the total relative rewards accumulated by an
agent with the same fraction in mining hash power and voting
pool deposit. We vary this fraction up to 1/3 because Casper
FFG is not secure above 1/3 adversarial voting power, but honest
voting is shown to be a Nash equilibrium for agents with < 1/3
voting power in [12].2 We observe that this attack allows the
agent to amplify its rewards more than selfish mining alone.
Figure 9 illustrates dramatic gains in relative voting reward, up
to 30% over honest rewards.

This attack raises an important practical concern. The
interest rate associated with voting rewards in Casper is close
to extrinsic interest rates (e.g. the stock market). Hence, if an
adversary is able to drive down an honest participant’s rewards,
honest voters may leave the voting pool, making it easier for an
adversary to control more than 1/3 of the voting power. Hence,
this attack can actually affect the integrity of the finalization
mechanism itself. An important implication of this case
study is that system designers should consider how incentive
mechanisms compose with other incentive mechanisms. That
is, Casper FFG in isolation is not vulnerable to these attacks. It
is only by combining mining incentives with the Casper FFG
voting protocol that we observe this vulnerability.

B. Block Withholding Attacks

We explore a second case study in which agents perform
block withholding attacks [18], [25], [36], [42], [55], an attack
observed in practice (see, e.g., [68]). In block withholding
attacks, a mining pool infiltrates miners into opponent pools to
diminish their revenue and gain a competitive advantage. The
attacking pool deploys mining resources in a target pool and
submits partial solutions, i.e., proofs of work, to earn rewards. If
the attacking pool mines a block in the target pool, it withholds
it. The target pool thus loses block rewards and revenue relative
to its hash power declines.

In prior work, Eyal [18] showed that for two competing
mining pools, there is a (unique) Nash equilibrium where each
pool assigns a fraction of its resources to infiltrate and sabotage
the other. SquirRL automatically learns pool strategies that
converge to the same revenues as predicted by that equilibrium.

We adopt the same model as in Eyal [18]. In the two-
party version of this model, strategic mining pools P1 and P2
each possess “loyal” miners with hash rates of m1 and m2,
respectively, 0≤ m1 +m2 ≤ 1. The remaining miners mine on
their own, not forming or joining a pool. A miner loyal to pool
Pi may either mine honestly in Pi or infiltrate P3−i, as dictated

2This result considers Casper FFG voters in isolation, without accounting
for the possibility of an agent’s concurrent mining activity.

by Pi. When an infiltrating miner loyal to Pi generates a partial
block reward, the reward is relayed to Pi and split among all
registered miners in Pi, as well as the miners who are loyal to
Pi but currently infiltrating P3−i. The goal is to maximize the
revenue of each miner, normalized by the revenue when there
is no block withholding attack.

Denote the hash power of miners loyal to Pi and infiltrating
P3−i by xi. Thus 0 ≤ xi ≤ mi. We set up the two-agent RL
experiment using the reward functions defined in [18]. Each
agent is assigned a mining hash power mi and aims to maximize
its reward by choosing xi, the hash power infiltrated into the
other pool, from a continuous action space [0,mi]. The reward
to be optimized is the immediate normalized revenue (again, as
defined in [18]). There is no state transition in this environment:
the game has episode length 1. Two agents take turns to adapt
their strategies given the best strategy the other agent learned
in the last episode. We trained the model using PPO because
it is suitable for the multi-agent setting, as mentioned before,
and supports continuous action spaces.

For reproducibility, our setting of hyperparameters in PPO
and training results are specified as follows. We set the clipping
parameter ε to 0.1, with a linear learning rate schedule decaying
from 10−5 to 10−7. The entropy coefficient β is set to 0.01
initially and decays to β← β(1− timestep/schedule) every
training step, with schedule set to 109. After 106 episodes,
both the strategies and rewards converge to those in the Nash
equilibrium specified in [18], to within 0.01. The detailed
policies and revenues are plotted in figs. 10 and 11 respectively.

Related work in [25] uses RL, specifically a policy gradient
based learning method [9], to study block withholding among
multiple agents in a setting with dynamic hash rates. A
limitation of that work is that it uses a discrete action space,
not a continuous one. One interesting feature is its inclusion of
a probabilistic model of migration of unaffiliated (free agent)
miners to the most successful pools, an extension of the model
in [36]. Unfortunately, this model is rather artificial, with no
grounding in empirical study, so we chose not to duplicate it.

VIII. RELATED WORK

A number of recent works have analyzed direct attacks on
and economic flaws in cryptocurrency protocols.

(1) Selfish Mining. The concept of selfish mining was introduced
by Eyal and Sirer in [19], and a large body of resulting
work has sought to refine related mining models and compute
protocol security thresholds in a selfish mining context [48],
[51], [54], [56]. Much of this work (including [56]) uses
MDP solving to compute optimal selfish mining strategies.
These exact solutions are less robust to unexpected, real-time
changes in honest hashpower than our RL-based approach.
An enhanced model with two selfish agents and one honest
agent is considered in [5], but this work does not consider the
presence of multiple rational actors in the network, which
is more realistic for a cryptocurrency mining setting. Our
techniques allow for reasoning about more realistic models
at the expense of theoretical guarantees.

(2) General Mining Attacks. A wide range of work has also
focused on potential mining attacks besides selfish mining. One
example is difficulty attacks [23], [47], in which miners can

13

profitably manipulate a chain’s difficulty by secretly raising
difficulty on their own private chain [4], switching between com-
peting currencies secured by the same mining hardware [47], or
pausing mining activities around difficulty adjustment time [23].
This can discourage mining altogether [30]. We leave the
analysis of such attacks to future work.

Attacks involving miner manipulation of user transactions,
via censorship or reordering, are surveyed in [29]. Many
such attacks have been shown in theory, allowing miners to
double-spend user funds or profit from incorrect assumptions in
second-layer applications [8], [40], [46]. Such attacks have been
observed in practice [15], [17] and can be performed without
hashpower by bribing existing miners [46], [69]. Because these
attacks yield direct revenue for miners, they can almost certainly
be used to subsidize a successful mining attack as described
in our work, lowering the required hashpower threshold.

Lastly, attacks against miners are possible at the network
layer. One example is DoS attacks on mining pools, which
have been observed in practice [71] and which more often
affect larger pools [28]. Another is eclipse attacks [14], [62],
[63], which can ensure a node is connected to only attackers
and is applied to blockchain systems in [27], [44]. It has
shown that such attacks can interact with selfish mining to
increase efficacy [48], and routing-based eclipse attacks have
been observed in blockchains [65].

(3) RL, MDPs, and Computer Security. Our work focuses in
part on analyzing multi-agent games with DRL. Littman [41]
first proposes the use of RL to extend MDP analysis to multi-
agent games. Recent work (e.g., [59], [73], [80]) has applied
this technique to cybersecurity actors, analyzing meta-games
between attackers and defenders. Our work extends this style
of analysis into a setting where multiple “attackers" compete to
maximize their own profit share. Unlike in traditional security,
our setting is not mutually exclusive (multiple attackers can
profit), and requires attackers to continually respond to each
others’ actions. This greatly increases strategy space complexity
in a way likely inherent to the open participation of most
cryptocurrency protocols.

IX. CONCLUSION

In this work, we propose SquirRL, a deep RL-based
framework to automate vulnerability detection in blockchain
incentive mechanisms. We have shown that SquirRL can
approximate known theoretical results regarding attacks on
blockchain incentive mechanisms. It can also handle challenging
settings such as multiple agents or continuous state spaces.
SquirRL cannot prove the security of a mechanism, but it can
serve as a “quick-and-dirty" tool for protocol designers to gain
intuition in cases where theoretical analysis is infeasible. Future
work may also illuminate new uses, including other classes of
incentive-based attacks, e.g., time-bandit attacks [15].

ACKNOWLEDGMENTS

We thank Alistair Stewart, Fatemeh Shirazi, and Alfonso
Cevallos for helpful conversations that inspired our experiments
on composed mechanisms. We thank Ren Zhang and our
anonymous reviewers for their helpful feedback. This work was
partially supported by the Army Research Office under grant

W911NF-18-1-0332-(73198-NS), the National Science Founda-
tion under grants CCF-1705007, CNS-1564102, CNS-1704615,
CNS-1933655, CA-2040675, the Initiative for Cryptocurrencies
and Contracts (IC3), and the Ripple Foundation.

REFERENCES

[1] Aws now offers nvidia quadro virtual workstations for ec2 g4 instances
at no additional cost. https://aws.amazon.com/about-aws/whats-new/
2020/01/aws-now-offers-nvidia-quadro-virtual-workstations-for-ec2-
g4-instances-at-no-additional-cost/, January 2020. Accessed on
November 13, 2020.

[2] The best crypto mining pools 2020. https://miningpools.com/, November
2020. Accessed on November 12, 2020.

[3] Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan.
On the theory of policy gradient methods: Optimality, approximation,
and distribution shift, 2019.

[4] Lear Bahack. Theoretical Bitcoin attacks with less than half of the
computational power (draft). arXiv preprint arXiv:1312.7013, 2013.

[5] Qianlan Bai, Xinyan Zhou, Xing Wang, Yuedong Xu, Xin Wang, and
Qingsheng Kong. A deep dive into blockchain selfish mining. arXiv
preprint arXiv:1811.08263, 2018.

[6] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell,
Bob McGrew, and Igor Mordatch. Emergent tool use from multi-agent
autocurricula, 2019.

[7] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung,
Przemysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer,
Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep
reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[8] Joseph Bonneau. Why buy when you can rent? In FC, pages 19–26.
Springer, 2016.

[9] Michael Bowling and Manuela Veloso. Scalable learning in stochastic
games. In AAAI, pages 11–18, 2002.

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. OpenAI gym, 2016.

[11] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget.
arXiv preprint arXiv:1710.09437, 2017.

[12] Vitalik Buterin, Daniël Reijsbergen, Stefanos Leonardos, and Georgios
Piliouras. Incentives in ethereum’s hybrid casper protocol. In ICBC,
pages 236–244. IEEE, 2019.

[13] Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind
Narayanan. On the instability of Bitcoin without the block reward.
In CCS, pages 154–167. ACM, 2016.

[14] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron,
and Dan S Wallach. Secure routing for structured peer-to-peer overlay
networks. OSR, 36(SI):299–314, 2002.

[15] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo
Bentov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrun-
ning, transaction reordering, and consensus instability in decentralized
exchanges. arXiv preprint arXiv:1904.05234, 2019.

[16] Christian Decker and Roger Wattenhofer. Information propagation in
the bitcoin network. In P2P, pages 1–10. IEEE, 2013.

[17] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok:
Transparent dishonesty: front-running attacks on blockchain. 2019.

[18] Ittay Eyal. The miner’s dilemma. In S&P, pages 89–103. IEEE, 2015.
[19] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining

is vulnerable. CACM, 61(7):95–102, 2018.
[20] Serge Fehr and Chen Yuan. Towards optimal robust secret sharing with

security against a rushing adversary. Cryptology ePrint Archive, Report
2019/246, 2019. https://eprint.iacr.org/2019/246.

[21] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Belle-
mare, Joelle Pineau, et al. An introduction to deep reinforcement learning.
Foundations and Trends® in Machine Learning, 11(3-4):219–354, 2018.

[22] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin
backbone protocol: Analysis and applications. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 281–310. Springer, 2015.

14

[23] Guy Goren and Alexander Spiegelman. Mind the mining. In Proceedings
of the 2019 ACM Conference on Economics and Computation, EC ’19,
pages 475–487, New York, NY, USA, 2019. ACM.

[24] Cyril Grunspan and Ricardo Pérez-Marco. Selfish mining in Ethereum.
arXiv preprint arXiv:1904.13330, 2019.

[25] Alireza Toroghi Haghighat and Mehdi Shajari. Block withholding game
among Bitcoin mining pools. FGCS, 97:482–491, 2019.

[26] X. He, H. Dai, and P. Ning. Improving learning and adaptation in security
games by exploiting information asymmetry. In 2015 IEEE Conference
on Computer Communications (INFOCOM), pages 1787–1795, 2015.

[27] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.
Eclipse attacks on Bitcoin’s peer-to-peer network. In USENIX Security,
pages 129–144, 2015.

[28] Benjamin Johnson, Aron Laszka, Jens Grossklags, Marie Vasek, and
Tyler Moore. Game-theoretic analysis of DDoS attacks against Bitcoin
mining pools. In FC, pages 72–86. Springer, 2014.

[29] Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay
Eyal, Peter Gaži, Sarah Meiklejohn, and Edgar Weippl. Pay-to-win:
Incentive attacks on proof-of-work cryptocurrencies. 2019.

[30] Igor Kabashkin. Risk modelling of blockchain ecosystem. In NSS, pages
59–70. Springer, 2017.

[31] Ido Kaiser. A decentralized private marketplace. 2017.

[32] Tamás Király and Lilla Lomoschitz. Profitability of the coin-hopping
strategy. EGRES quick proof, (2018-03), 2018.

[33] Richard Klíma, Karl Tuyls, and Frans A. Oliehoek. Markov security
games : Learning in spatial security problems. 2016.

[34] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In
NeurIPS, pages 1008–1014, 2000.

[35] Yujin Kwon, Dohyun Kim, Yunmok Son, Eugene Vasserman, and
Yongdae Kim. Be selfish and avoid dilemmas: Fork after withholding
(faw) attacks on bitcoin. In CCS, pages 195–209, 2017.

[36] Aron Laszka, Benjamin Johnson, and Jens Grossklags. When Bitcoin
mining pools run dry. In FC, pages 63–77. Springer, 2015.

[37] Chenxing Li, Peilun Li, Dong Zhou, Wei Xu, Fan Long, and Andrew
Yao. Scaling Nakamoto consensus to thousands of transactions per
second. arXiv preprint arXiv:1805.03870, 2018.

[38] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecurity,
1(1):6, 2018.

[39] Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox,
Ken Goldberg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica.
RLlib: Abstractions for Distributed Reinforcement Learning. arXiv
e-prints, page arXiv:1712.09381, Dec 2017.

[40] Kevin Liao and Jonathan Katz. Incentivizing blockchain forks via whale
transactions. In FC, pages 264–279. Springer, 2017.

[41] Michael L Littman. Markov games as a framework for multi-agent
reinforcement learning. In Machine learning proceedings 1994, pages
157–163. Elsevier, 1994.

[42] Loi Luu, Ratul Saha, Inian Parameshwaran, Prateek Saxena, and Aquinas
Hobor. On power splitting games in distributed computation: The case
of Bitcoin pooled mining. In CSF, pages 397–411. IEEE, 2015.

[43] Pasin Manurangsi, Akshayaram Srinivasan, and Prashant Nalini Va-
sudevan. Nearly optimal robust secret sharing against rushing adver-
saries. Cryptology ePrint Archive, Report 2019/1131, 2019. https:
//eprint.iacr.org/2019/1131.

[44] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource
eclipse attacks on Ethereum’s peer-to-peer network. IACR Cryptology
ePrint Archive, 2018:236, 2018.

[45] Francisco J. Marmolejo-Cossío, Eric Brigham, Benjamin Sela, and
Jonathan Katz. Competing (semi)-selfish miners in Bitcoin. arXiv
e-prints, page arXiv:1906.04502, Jun 2019.

[46] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart
contracts for bribing miners. In FC, pages 3–18. Springer, 2018.

[47] Dmitry Meshkov, Alexander Chepurnoy, and Marc Jansen. Short paper:
Revisiting difficulty control for blockchain systems. In Data Privacy
Management, Cryptocurrencies and Blockchain Technology, pages 429–
436. Springer, 2017.

[48] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn

mining: Generalizing selfish mining and combining with an eclipse
attack. In EuroS&P, pages 305–320. IEEE, 2016.

[49] Michael Neuder, Daniel J Moroz, Rithvik Rao, and David C Parkes.
Selfish behavior in the tezos proof-of-stake protocol. arXiv preprint
arXiv:1912.02954, 2019.

[50] Thanh Thi Nguyen and Vijay Janapa Reddi. Deep reinforcement learning
for cyber security. arXiv preprint arXiv:1906.05799, 2019.

[51] Jianyu Niu and Chen Feng. Selfish mining in Ethereum. arXiv preprint
arXiv:1901.04620, 2019.

[52] OpenAI. OpenAI Five Defeats Dota 2 World Champions, 2019. https:
//openai.com/blog/openai-five-defeats-dota-2-world-champions/.

[53] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In PODC,
pages 315–324. ACM, 2017.

[54] Fabian Ritz and Alf Zugenmaier. The impact of uncle rewards on selfish
mining in Ethereum. In EuroS&PW, pages 50–57. IEEE, 2018.

[55] Meni Rosenfeld. Analysis of Bitcoin pooled mining reward systems.
arXiv preprint arXiv:1112.4980, 2011.

[56] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal
selfish mining strategies in Bitcoin. In FC, pages 515–532. Springer,
2016.

[57] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms. arXiv e-prints, page
arXiv:1707.06347, Jul 2017.

[58] Sailik Sengupta and Subbarao Kambhampati. Multi-agent reinforcement
learning in bayesian stackelberg markov games for adaptive moving
target defense. arXiv preprint arXiv:2007.10457, 2020.

[59] Sajjan Shiva, Sankardas Roy, and Dipankar Dasgupta. Game theory for
cyber security. In CSIIRW, page 34. ACM, 2010.

[60] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484, 2016.

[61] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, et al. Mastering chess and shogi by self-
play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[62] Atul Singh et al. Eclipse attacks on overlay networks: Threats and
defenses. In IEEE INFOCOM. Citeseer, 2006.

[63] Emil Sit and Robert Morris. Security considerations for peer-to-peer
distributed hash tables. In IPTPS, pages 261–269. Springer, 2002.

[64] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction
processing in Bitcoin. In FC, pages 507–527. Springer, 2015.

[65] Joe Stewart. BGP hijacking for cryptocurrency profit.
https://www.secureworks.com/research/bgp-hijacking-for-
cryptocurrency-profit, Aug 2014.

[66] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay
Mansour. Policy gradient methods for reinforcement learning with
function approximation. In NeurIPS, pages 1057–1063, 2000.

[67] Csaba Szepesvári. Algorithms for Reinforcement Learning, volume 4.
01 2010.

[68] Lylian Teng. F2Pool founder condemns block withholding attacks
performed by some chinese mining pools on its competitors.
https://news.8btc.com/f2pool-founder-condemns-block-withholding-
attacks-performed-by-some-chinese-mining-pools-on-its-competitors,
June 2019.

[69] Jason Teutsch, Sanjay Jain, and Prateek Saxena. When cryptocurrencies
mine their own business. In FC, pages 499–514. Springer, 2016.

[70] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double Q-learning. arXiv e-prints, page arXiv:1509.06461,
Sep 2015.

[71] Marie Vasek, Micah Thornton, and Tyler Moore. Empirical analysis of
denial-of-service attacks in the Bitcoin ecosystem. In FC, pages 57–71.
Springer, 2014.

[72] Pavel Vasin. Blackcoin’s proof-of-stake protocol v2. https://blackcoin.co/
blackcoin-pos-protocol-v2-whitepaper.pdf, 2014.

[73] Yufei Wang, Zheyuan Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas
Joppa, and Fei Fang. Deep reinforcement learning for green security

15

games with real-time information. In AAAI, volume 33, pages 1401–1408,
2019.

[74] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine
learning, 8(3-4):279–292, 1992.

[75] CC White. Markov decision processes. Springer, 2001.
[76] Ronald J Williams. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine learning, 8(3-4):229–256,
1992.

[77] Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain
framework.

[78] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[79] Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy
Ba. Scalable trust-region method for deep reinforcement learning using
kronecker-factored approximation. In NeurIPS, pages 5279–5288, 2017.

[80] Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, and Fei Fang. Deep
reinforcement learning for green security game with online information.
In AAAI, 2018.

[81] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforce-
ment learning: A selective overview of theories and algorithms. arXiv
preprint arXiv:1911.10635, 2019.

APPENDIX

A. Relative vs. Exact Rewards

The difficulty of a block is the average computation required
to mine it. If the computational power of the whole network
increases or decreases, the block difficulty increases or decreases
accordingly to maintain a target block generation time under
dynamic network conditions. For instance, in Bitcoin, the target
main chain block generation rate, a.k.a. growth rate, is T0 = 10
minutes/block, and the difficulty is adjusted every M = 2016
blocks; we call this duration an epoch. The difficulty d′ of one
next epoch is adjusted according to the current difficulty d and
the average main chain growth rate T of the current epoch,
such that d′ = d T0

T .

We next show that over n epochs with difficulty adjustment,
the absolute reward rate (scaled by a constant) and relative
reward are close for a strategic agent against an arbitrary number
of other agents. In what follows, we let Sa and So denote the
number of stale blocks mined by the adversary of interest and all
the other miners in a single epoch, respectively; a stale block is
a block that does not end up on the main chain, and hence does
not collect any block reward. Note that the following result
relies on the deterministic analysis of [23], which abstracts
away the stochastics of the problem.

Proposition A.1. Let Rn denote the expected absolute reward
rate over n epochs, R̃n the expected relative reward rate, k
the number of independent actors (all honest parties can be
considered to be one actor), and T0 the target (expected) inter-
block time. Consider an attacker with α < 0.5 fraction of the
total hash power in the network. We assume that 1) the attacker
always uses all its mining power, 2) the attacker uses the same
strategy across all epochs, and 3) the total hash power of
the network remains unchanged across epochs. Then under a
deterministic analysis model, Rn =

1
T0

Ba
(Ba+Bo)+

1
n (Sa+So)

, which

in turn implies that |T0Rn− R̃n| ≤ k−1
n .

Proposition A.1 implies that over a single epoch, honest
mining is an optimal strategy for maximizing the absolute re-
ward rate; selfish mining is actually less profitable. This follows
because to maximize the absolute reward in proposition A.1,

the denominator should be minimized. This can be achieved by
producing no stale blocks, which occurs under honest mining.

Moreover, since maximizing absolute rewards is equivalent
to maximizing relative rewards scaled by a positive constant
(T0), Proposition A.1 suggests that for moderate n, the objective
functions for optimizing relative rewards and absolute reward
rate are close. We have that limn→∞ Rn =

R̃n
T0
, i.e., in the infinite-

time horizon, optimizing absolute reward rate is equivalent to
optimizing relative rewards. SquirRL can be used to optimize
both; to compare with prior literature and because of this
asymptotic equivalence, we focus on relative rewards.

1) Proof of Proposition A.1: We use the deterministic
analysis of [23], which deals entirely with expectations and
abstracts away random block times; it is a good approximation
when the epoch duration is high (as in Bitcoin). Let the number
of agents in the blockchain be k. We denote the number of main
chain blocks generated by the attacker during the ith epoch
as Ba(i) (assuming 1≤ i≤ n) and the number of stale blocks
generated by the attacker as Sa(i); we suppress the notation p
for simplicity. A stale block is any block that does not end up on
the main chain. Those numbers for all other parties combined
are Bo(i) and So(i). We have Ba(n)+Bo(n) = M,n ∈N+ since
every epoch has M blocks in the main chain.

In the first epoch, the average block generation time is T0,
but the main chain growth rate may be lower than 1/T0 if the
attacker deviates from the honest mining protocol. Therefore, the
total duration of the first epoch is D1 = (M+Sa(1)+So(1))T0.
After the first difficulty adjustment, the difficulty will be multi-
plied by M/(M+Sa(1)+So(1)), so the expected duration of
the second epoch is D2 = (M+Sa(2)+So(2))T0

M
(M+Sa(1)+So(1))

.
We assume all parties repeat their strategies for all epochs, so
we have Ba(1) = Ba(2),Bo(1) = Bo(2),Sa(1) = Sa(2),So(1) =
So(2) under deterministic analysis [23]. We use the simplified
notation Ba,Bo,Sa,So and suppress notation n. Therefore, the
total time for the second epoch is actually MT0. This pattern
holds for larger n by induction. We can therefore write the
absolute reward rate of the attacker for n epochs Rn as follows:

Rn =
nBa

(M+Sa +So)T0 +(n−1)MT0
=

nBa

nMT0 +(Sa +So)T0

=
1
T0

Ba

(Ba +Bo)+
1
n (Sa +So)

. (1)

Optimizing the absolute reward rate for n epochs Rn is
equivalent to optimizing T0Rn, since this just scales the objective
by a constant. The difference between R̃n and T0Rn gives

|T0Rn− R̃n|=
Ba

Ba +Bo
− Ba

(Ba +Bo)+
1
n (Sa +So)

≤
M((k−1)M

n)

M2 =
k−1

n
(2)

where (2) follows because Ba+Bo =M and Sa+So ≤ (k−1)M,
because there can only be at most k branches at a time and
only the longest chain ends up as the main chain.

B. Ethereum

Our second experiment explores the Ethereum incentive
mechanism. In this setting, we were unable to recover the true
optimal solution using an MDP solver, as the full Ethereum

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
P2's Hash Power m2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Re
wa

rd

RL-r1
NE-r1
RL-r2
NE-r2

Fig. 11: Rewards of NE vs RL. P1’s hash
rate m1 = 0.1. Here, r1 denotes the reward
of P1 and r2 that of P2.

0.0 0.1 0.2 0.3 0.4 0.5
Attacker's Hash Power

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Re
wa

rd

SquirRL
SM1
honest

0.320.340.360.380.400.420.44
0.40

0.45

0.50

0.55

0.60

0.65

0.70

Fig. 12: Ethereum relative reward as a
function of adversarial hash power. RL
beats the state-of-the-art schemes.

0 20 40 60 80 100 120

0.04

0.02

0.00

Agent 0 Rel. Reward -

0 20 40 60 80 100 120

0.02

0.00

Agent 1 Rel. Reward -

0 20 40 60 80 100 120
0.10

0.05

0.00

Agent 2 Rel. Reward -

0.00

0.01

0.02

0.03

Agent 0 match proportion

0.00

0.01

0.02

Agent 1 match proportion

0.000

0.005

0.010

0.015

Agent 2 match proportion

Iteration Number

R
el

at
iv

e
R

ew
ar

d
-

α

Fr
ac

tio
n

of
‘m

at
ch

’
ac

tio
ns

Fig. 13: Agent 2 chooses to increase
matching proportion, loses reward, and then
returns to the equilibrium strategy.

H=4

𝑢𝑢3 = 1 𝑢𝑢2 = 2 𝑢𝑢1 = 1

Main Chain

Hanging Uncle Blocks Attacker’s Secret Fork

Public Fork

Fig. 14: Ethereum state (2,1,irrelevant) and U =
{1,2,1,0,0,0}. Orange blocks are mined by the attacker and
blue blocks by the honest miner.

H=6

𝑢𝑢2 = 2

𝑢𝑢5 = 0 𝑢𝑢4 = 2 𝑢𝑢3 = 0

Main Chain

Attacker’s Main Chain Blocks

New Hanging Uncle Block

Fig. 15: Ethereum state (0,0,irrelevant) and U =
{0,2,0,2,0,0}. The attacker overrode the public fork with
its secret fork and referred to two uncle blocks.

state space is too large. Because of this, existing papers on
selfish mining in Ethereum [24], [51], [54] do not derive an
optimal solution like the one for Bitcoin [56]. This section
illustrates how SquirRL can be used to explore the strategy
space in scenarios where we do not have a priori intuition
about what strategies perform well and when MDP solvers are
unable to recover meaningful results.

The Ethereum incentive mechanism is similar to Bitcoin’s,
except for its use of uncle rewards. If a block is not a main-
chain block but a child block of a main-chain block, it can be
referenced as an uncle block (Figure 14). A block can have at
most two uncle-block pointers and obtains 1

32 of the full block
reward for each. In addition, the miner of the uncle obtains a
8−k

8 (1 ≤ k ≤ 6)-fraction of the full block reward, where k is
the height difference between the uncle block and the nephew
block that points to it.

Feature Extraction. Here, we illustrate how to derive the
feature extractor ϕ for Ethereum. Note that L(C,T,E) = len(C)
as noted in Section IV-D in the Ethereum example.

To compute feat(U(s)), notice that a mined block can refer
to (up to) any two uncles in the 6-block history of the main
chain. Hence, upon publishing C, the reward can depend on (a)
the presence/absence of uncle blocks at each of the 6 prior main-
chain blocks, and (b) who mined those uncle blocks. As such,
we have Spro f = (len(Ca),u), where u , {ui}6

i=1 encodes the
information of the uncle blocks hanging on the main chain block
of height H− i, where H is the current height of the last common
block of the main chain (Figure 14). Each ui ∈ {0,1,2}; ui = 0

means there are no available uncle blocks at that height. ui = 1
and ui = 2 mean that the uncle block was mined by the attacker
or honest miner, respectively. For instance, in Figure 14, the
attacker holds a secret fork with 2 blocks, while the public
fork has only 1 block. The height of the main chain is H = 4,
and there are two uncle blocks mined by the attacker hanging
from blocks of height 1 and 3. The uncle block mined by the
honest miner is hanging at height 2. So the uncle vector is
u = {1,2,1,0,0,0}. These uncle blocks as well as the len(C)
(as in Bitcoin) determine the instantaneous reward. len(C) is
already included as part of the score, so we can leave out of the
instantaneous reward portion of our features. Finally, Ethereum
considers chains of equal length to be equally valid, regardless
of when each were made public. So there is no fork feature
required to include as part of act(s), as all the other features
will determine what actions are available.

Hence, our final features are [len(C),H,u]. Notice that our
framework for determining Spro f does not directly store the
uncle references; instead, it stores the minimum amount of
information needed to compute the reward for any given set of
uncle references. This design choice prevents the state space
from getting bloated. For example, if we limit the maximum
number of hidden blocks to 20, the state space size is around
291,600, which is out of range for many MDP solvers, but
within range for DRL.

The uncles do not affect the state transitions. Updates to
vector u caused by the addition of a new block have three
effects: 1) Any referred uncle blocks are removed from the
vector by setting their corresponding entries to 0; this prevents

17

Root

RL

OSM: wait, RL: override

Root

RL

OSM

OSM: wait, RL: adopt or wait

Root

RL

OSM OSM

OSM: override, RL: adopt or wait

Root

RL

OSM OSM

OSM: doesn’t matter, RL: adopt

Fig. 16: A sample trajectory. Dotted chains
are private, and the text displays the actions
of the agents following OSM and SquirRL,
respectively.

0.1 0.2 0.3 0.4 0.5
Attacker's Hash Power

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
op

or
tio

n
of

 A
ct

io
ns

 S
pe

nt
 W

ai
tin

g SquirRL (vs OSM)
OSM (vs OSM)

Fig. 17: Agent C, when using SquirRL ,
tends to use the "wait" action more than
Agent B, who is following OSM.

Fig. 18: The total hash rate fluctua-
tion(normalized) and the relative hash
power for the attacker with initial α = 0.4
in Bitcoin from Sep. 2018 to Oct. 2018.

future blocks from referring to these already-referred uncle
blocks. 2) As the main chain’s height is growing, the uncle
indices are shifted, and any uncle blocks deeper than depth 6
are discarded, since they cannot be referred to by any future
blocks. 3) Any fork shorter than the main chain is abandoned,
and its first block becomes a new potential uncle block.

Performance. Figure 12 compares the relative rewards ob-
tained by SquirRL to that of other selfish mining attacks in
Ethereum [24], [51], [54]. SquirRL outperforms prior schemes,
which implement constrained strategies that are similar to
SM1. As Figure 12 shows, Bitcoin OSM also outperforms
prior works. SquirRL at least matches the performance of
OSM in most cases, and for hash power ranging from 25% to
45%, outperforms OSM by 0.4% to 1.0%. SquirRL implements
a strategy that is more “stubborn” than OSM, growing its secret
fork more aggressively to compensate for the penalty of uncle
rewards accruing to the honest player when the attacker fails
to overwrite the main chain.

C. Non-monotonicity in OSM experiments (Figures 5 and 6)

There can be many OSM strategies that give the same reward
in the single-agent setting, but give different rewards in the multi-
agent setting. Figure 16 shows a sample trajectory of an OSM
strategy that caused negative excess relative rewards in Figure
5 and the positive non-monotonicity of Figure 5. The critical
difference between this strategy, which is honest in the single-
strategic-agent setting and not honest in the multi-strategic-
agent setting, with an overall honest strategy is the action the
agent chooses at (a,h, fork) = (0,0, .). In the overall honest
strategy, one should adopt at (a,h, fork) = (0,0, .). However,
in the strategy depicted in Figure 16, the agent chooses to

Multiplicative Reward Additive Reward
Justified, Correct vote D+

v = (1+mρ/2)Dv rv = mρ/2Dv

Justified, Incorrect vote D+
v = 1+mρ/2

1+ρ
Dv rv = (1+mρ/2

1+ρ
−1)Dv

Unjustified, Correct vote D+
v = Dv rv = 0

Unjustified, Incorrect vote D+
v = 1/(1+ρ)Dv rv =−ρ/(1+ρ)Dv

TABLE IV: Reward rule in Casper FFG. The original multi-
plicative rule is not well-suited to RL systems, because the
reward can become infinite over time, causing the value function
to be ill-defined. Since the growth factor is small in practice, we
choose an additive reward in our experiment that approximates
the multiplicative reward over a finite time horizon. Dv is the
deposit of voter v and rv is the immediate additive reward. m
is the fraction of correct votes.

wait at (a,h, fork) = (0,0, .). In Figure 17, we see that the non-
monotonicity in strategy corresponds to the non-monotonicity
in rewards we observed in Figures 5 and 6. Notably, this
phenomenon was not observed in the multi-agent selfish mining
analysis of [45]. This is because their semi-selfish agents
automatically adopted at (a,h, fork) = (0,0, .).

D. Details of the Casper FFG Experiment

We use an epoch length of 10. The voting probability pvote is
set to 0.9. The distribution Dvote for the proportion of votes cast
per step is N (0.1,0.05), truncated to [0,1]. Casper FFG uses
a multiplicative reward mechanism. If an agent acts according
to protocol, her deposit is multiplied by a factor greater than
1, whereas if she disobeys protocol, her reward is multiplied
by a factor less than 1. Table IV lists the precise formula for
reward allocation under the column ‘Multiplicative Reward’. We
pick the reward parameters to reflect the parameters deployed
in practice. The target total deposit pool is D = 107. In the
original setting, the parameter ρ is calculated in every epoch by
ρi = γD−p

i +β(ESFi−2), where Di is the deposit pool in epoch
i and γ = 7 · 10−3,β = 2 · 10−7, p = 1/2. Notice that the first
term of the equation dominates the second term; therefore we
omit the β(ESFi−2) term for simplicity. Therefore, we have a
constant ρ = 2.21 ·10−6. Secondly, the original reward system
is multiplicative, but we realize the total deposit pool is very big
and the multiplicative factors are within [1/(1+ρ),1+1/2 ·ρ],
which is very close to 1. Within 1000 epochs, the absolute
reward varies less than 1%. Therefore, we fix the total deposit
D= 107 and represent the rewards additively, described in Table
IV, column ‘Additive Reward’.

We justify our parameters by numerical calculation. After
the Thirdening upgrade, the production of ETH from block
mining per year is around 4.9 ·106 ETH. From [12], the target
deposit pool is 107 and the in ideal situation, the annual interest
of voting is 5%, therefore the ETH production from voting
reward is 5 ·105 every year. Hence, the ratio between mining
reward and voting reward is around 10 : 1. In our experiment,
one epoch contains 10 blocks, which means there are 20 ETH
mined in an epoch. In an ideal situation voting round, the
absolute reward for all voters is ρ/2D≈ 10.6 ETH. We also
need to divide the reward by 5, since we are using 10 as the
epoch length instead of 50. Hence, the voting reward in one
epoch is 2.12 ETH, which matches the 10 : 1 ratio.

18

