
Broken Proofs of Solvency in Blockchain Custodial Wallets
and Exchanges

Konstantinos Chalkias1, Panagiotis Chatzigiannis2, and Yan Ji3

1 Meta / Novi Financial
2 George Mason University

3 Cornell University

Abstract. Since the Mt. Gox Bitcoin exchange collapse in 2014, a number of custodial
cryptocurrency wallets offer a form of financial solvency proofs to bolster their users’ confi-
dence. We identified that despite recent academic works that highlight potential security and
privacy vulnerabilities in popular auditability protocols, a number of high-profile exchanges
implement these proofs incorrectly, thus defeating their initial purpose. In this paper we
provide an overview of broken liability proof systems used in production today and suggest
fixes, in the hope of closing the gap between theory and practice. Surprisingly, many of these
exploitable attacks are due to a) weak cryptographic operations, for instance SHA1 hashing
or hash-output truncation to 8 bytes, b) lack of data binding, such as wrong Merkle tree
inputs and misuse of public bulletin boards, and c) lack of user-ID uniqueness guarantees.

Keywords: blockchain, custodial wallets, solvency proofs, light clients, Merkle trees, public
bulletin board, cryptographic attacks, data binding, hash-truncation, dispute resolution.

1 Introduction

It is considered a good practice for organizations that accept and manage customer funds (ranging
from banks to blockchain custodial wallets) to be periodically audited for their financial solvency,
i.e., showing that they have enough assets to pay back their customers. These solvency audits imply
that the amount of total assets owned by the organization at least matches4 its total liabilities,
which are effectively its customers’ deposits.

With many cryptocurrencies emerging during the last decade, several centralized organizations
appeared offering various types of services such as exchanges, online wallets and interest accounts
[29]. With blockchain technology at its infancy, these unregulated services remained opaque to
their internal operations. Unsurprisingly, given the absence of a universal legal framework and
centralized protection against fraudulent or malicious acts, combined with the delicacy of handling
private keys required to spend cryptocurrency assets, a number of exchanges have lost their deposits
and declared bankruptcy. In the most infamous case, the collapse of Mt. Gox (one of the oldest
exchanges in Bitcoin’s history), over $450M in customer assets were lost [34,35]. Other bad practices
on behalf of those organizations include investing users’ funds without their consent [19].

Towards implementing methods for preventing such fraudulent behavior against the cryptocur-
rency users, decentralized solutions [24,26,27,28,30,33,36] requiring customers to jointly participate
on the auditing process were proposed as an alternative or complementary method to conventional
auditing; therefore placing less trust on centralized auditors and empowering customers to verify
that their own account and balance is indeed part of a Proof of Liabilities (which in turn is part
of a Proof of Solvency), which cannot be achieved by centralized auditing. Ultimately, the goal
exchanges proving their solvency is to earn users’ trust in a distributed fashion while minimizing

4 In certain cases, partial solvency might be sufficient, however for the purposes of our paper these cases
are equivalent.

disclosure of additional information that could potentially expose clients’ data, therefore preserving
the “decentralization” and “(pseudo)-anonymity” characteristics. Naturally, we are now observing
a rising demand in standardizing proof of solvency in the digital assets industry [23,28].

However, these new technologies, especially those in the blockchain space, are still being studied
in terms of their security guarantees, and special considerations around potential weaknesses must
be made during implementation. Proof of liabilities is no exception to this rule. All liability prov-
ing systems should serve the same goals: prove liabilities without understating obligations, while
preserving privacy. However, recent works showed that these goals are not always met [28,29,32].

Our contributions. This work is the product of recent academic research on auditability and
solvency, combined with extensive discussions with blockchain researchers in academia and auditing
firms and stakeholders in blockchain associations and organizations. We show that improvements
are still needed towards earning user trust, as we observe several cases of “broken” proof of liabilities
implementations, therefore making these proofs disputable. After pinpointing to exploitable real
world solvency processes, we provide the relevant discussion and context for addressing these issues
towards closing the gap between theory and practice. Unfortunately, every analyzed solvency tool
in this paper suffers from one or more exploitable security issues.

Paper Organization. The rest of the paper is organized as follows: In Section 2 we provide informal
definitions for the related auditability proofs, and discuss different types of wallets to highlight the
setting where these proofs are applicable. In Section 3 we provide a high-level overview of existing
Proof of Liabilities schemes in the literature, and their potential security or privacy issues. In
Section 4 we show the weaknesses of existing practical PoL implementations in the blockchain
space and suggestions for fixing them. In this Section we also highlight subtle differences which
exist in some of those implementations, which do not make them necessarily insecure, but implicitly
operate under a different trust model. We provide our final remarks and conclusions in Section 5.

2 Background

2.1 Definitions

We first informally present the basic properties required for the auditability proofs we are exploring
based on the formal definitions in [33]. The participating parties in a Proof of Liabilities (PoL)
protocol are the following: a) The exchange P which is in the prover role and b) The exchange
customers U = {u1, · · · , un} in a verifier role. In our setting, P publishes a commitment to a
liabilities dataset L on a public bulletin board such as a blockchain. Then on a user’s query, P
proves that the user’s balance with the exchange is indeed part of L. A PoL scheme should ensure:

– Security : P will not be able to “hide”/“understate” its liabilities (note that P has no incentive
to increase the total liabilities).

– Privacy : Any user ui should not learn from the proof any information besides that its account
balance is indeed included in L (e.g. total number of clients, other users’ balances etc.)

2.2 Types of cryptocurrency wallets/exchanges

The key management process is an important component of digital asset custody that clients should
evaluate when choosing a wallet. This work focuses on custodial wallets, but as we realized many
misconceptions around terminology even among experts, we provide a wallet-type categorization
depending on who controls the on-chain private keys. Interestingly, blockchain wallets exist in
different flavours regarding the offered capabilities and processes. There are also cases of hybrid
types, where both the users and some custodian(s) mutually control the private keys [10]. Based
on the above, we enlist four of the most popular wallet-types in the blockchain industry.

2

Pure Non-Custodial (PNC) In PNC wallets [11,14] (often mentioned as self-custody), users
control their on-chain assets by having full control over an actual blockchain address. Most of these
will expect a recovery key or passphrase that lets users load the wallet on other devices and wallet
software. These keys must be kept safe because once compromised anyone can access and control
funds contained in the wallet. There exist many kinds of PNC wallets, such as mobile, desktop,
hardware, paper, secure-enclave based, browser plugins and more.

Remark 1. PNC wallets poses account recoverability risks, especially for non-experts, given many
recent examples of people losing their keys [25], but indeed there is no dependency on custodians
and solvency proofs are irrelevant.

Assisted Non-Custodial (ANC) To circumvent the key-loss issue, ANC wallets (e.g. ZenGo
and Conio [22,8]) remove the burden of the single atomic private key and split the responsibility
between multiple parties. Typically, these wallets use a 2-out-of-3 key share policy, where one part
of the key is known to the user (i.e., a passphrase), the other part is stored encrypted in some
user-controlled encrypted storage (i.e., iCloud) and the third share is controlled by a custodian.
In practice, two of the shares should participate in transaction signing, which implies that the
custodian is a minority and cannot spend without the user’s permission. If users forget their
passphrase, they can still sign a transaction using their iCloud plus custodian’s shares.

Remark 2. There are variants of the above 2-out-of-3 approach, where instead of cloud storage, the
user’s bank has a share (i.e., see Conio.com wallet). In the above approach, the two “custodians”
need to collude in order to cheat, so although no entity controls more than 33.3% of the key material,
it would be interesting to explore if legislation will enforce requiring a custodial operation license.
However, it is clear that ANC wallets don’t require the custodian to prove solvency either.

Omnibus Custodial (OC) An OC wallet (e.g., Coinbase5 [7] and Binance [3] exchanges) holds
user funds in pools of funds on-chain while balances are managed on a private ledger. The bulk
of user funds is usually stored in one or more on-chain addresses even though the exchange might
have millions of users. This means that there is not a 1-1 matching between a user account and an
on-chain address. In fact, users do not interact with the blockchain at all and typically they are not
even aware of what addresses their wallet provider controls. Due to user-experience benefits, reports
from Chainalysis [13] show that custodial services are very popular among current cryptocurrency
owners. Clearly, this is the major wallet type where proofs of solvency should apply.

Remark 3. In case a user loses his/her password to an OC wallet, in most cases funds can be
restored by KYC (know your customer) or “forgot my password” 2FA methods. Another benefit is
protection of user’s privacy against outsiders (only the custodian can see who owns what).

Segregated Custodial (SC) In SC wallets, each user is assigned with one (or more) blockchain
addresses, but the custodian controls all of the private keys on behalf of the users, as in Dapper
wallet [9]. It is highlighted that if wallet users cannot track which on-chain addresses correspond
to their accounts, a proof of solvency solution is also recommended.

Remark 4. In SC wallets there is no mixing of cryptocurrencies from different users under the
same address. This allows for public observability of “which account owns what” and this is usually
considered as more transparent, but less privacy preserving, compared to OC.

5 Note that Coinbase.com exchange is different from Coinbase wallet: Coinbase.com is an OC exchange,
while Coinbase wallet is a PNC wallet, similar to Metamask. This subtle distinction [6] has caused
confusion in the past with people losing their keys in the Wallet (and therefore their funds as well).

3

2.3 Proof of liabilities in wallets and exchanges

Having discussed the above flavors of wallets and exchanges, we now need to emphasise that
PoL is applicable to custodial wallets only, as in any non-custodial wallet type, users are directly
involved in their assets management. Intuitively, a PoL protocol is easier to implement in a SC
approach, and is more challenging in an OC approach, as the absence of a 1-1 match between user
and on-chain address makes implementing a secure PoL (that prevents an exchange from hiding
liabilities) more complex. In addition, as custodial wallets are popular among cryptocurrency
owners [13], implementing secure proof of reserves for custodial wallets has already been proposed
as an essential tool for the blockchain industry [23].

3 Proof of Liabilities schemes

We now provide a brief overview of PoL schemes proposed in the blockchain setting [26,27,28,30,36].
All schemes follow the same paradigm we discussed in the previous section: the prover publishes a
commitment and each user checks if his/her balance is properly included accordingly.

Provisions[30] proposes a PoL scheme in which P commits to each user’s balance on a public
bulletin board (PBB) so users can check if their balances are properly included. In particular,
the balances are in homomorphic Pedersen commitments and proven positive in a zero-knowledge
manner so that the values of users’ balances are concealed. However, the commitment size on a PBB
is linear in the number of users so it doesn’t meet the efficiency requirement in [33]. Additionally,
the number of users is public and dummy accounts need to be added to mitigate this privacy issue.

Maxwell-Todd scheme [36] initiated the line of works using a “summation” Merkle tree to prove
total liabilities while minimizing the cost on PBB. In this Merkle tree variant, apart from the hash
field h in each tree node, there’s an additional value field v which is the sum of the values of the
child nodes as shown in fig. 1. In this approach, P generates the summation tree and publishes the
Merkle root, with the value of the root representing the amount of P’s total liabilities. Then any
u can query P for a Merkle proof to make sure the amount is included in the tree. For example, in
fig. 1, on query by User 1, say Alice, P would reply with the Merkle path (h2, v2), (h6, v6), which
would enable Alice to verify the proof for the total liabilities in the root vroot.

This approach however is problematic, as it enables P to claim less liabilities [32] by computing
each tree node value as v = max(vl, vr) while still being able to generate inclusion proofs and
successfully pass any user queries. In addition, the value of the total liabilities is public (which
is not ideal), and anyone can infer the population and/or individual liabilities though a series of
inclusion proofs. Unfortunately, this scheme is still being used in existing cryptocurrency exchanges;
we explain the security issues by an easy to follow example in Section 4.1.

Maxwell+[32] fixes the vulnerability in the previous protocol by simply modifying each node
field to include both values and hashes of child nodes, i.e., h = H(vl ||vr ||hl ||hr). This modification
effectively binds the value of each node in the parent, and prevents the manipulation of the tree we
discussed previously. However this scheme still does not address the privacy issues we mentioned.

Maxwell++[27] further extends Maxwell+ to conceal the population and individual liabilities
by breaking and shuffling values into small units, but still without concealing P’s total liabilities.

Camacho[26] provides privacy of liabilities by replacing the values in Maxwell-Todd by Peder-
sen commitments associated with zero-knowledge range proofs. The hiding and binding properties
of Pedersen commitments provide privacy while preventing liability manipulation, and their homo-
morphic properties allows summation in commitments. The total liabilities can only be disclosed
by voluntarily opening the commitment, or alternatively, P can prove the range of the total lia-
bilities by utilizing zero-knowledge proofs. While Camacho hides liabilities, it leaks the number of
users, and is also susceptible to the flaw we discussed in Maxwell-Todd’s scheme.

4

DAPOL[28] and DAPOL+ [33] improve Camacho by adopting the proposed fix in [32], and use
sparse Merkle trees (SMT) to more efficiently hide the number of users.

4 Vulnerabilities in PoLs in Practice and Mitigations

Table 1: Vulnerabilities in existing PoL implementations in practice.

Issues identified Affected VASPs/auditors Mitigation

Vulnerable summation tree BHEX, Deloitte’s audits Bind left/right values vs. sum

Short hash collisions BHEX Avoid hash truncation

Shared user ID
Coinfloor, Kraken, BitMEX,

Armanino’s audits
Ensure unique user IDs

Inconsistent root commitment Coinfloor, BitMEX Commit on PBB

Leak of individual liabilities BHEX, Deloitte’s audits, Coinfloor Use Pedersen commitments

Leak of number of users BHEX, Deloitte’s audits, Coinfloor, Kraken Use sparse Merkle tree

Despite extensive theoretical research around PoL, as discussed in the previous section, we still
observe a significant gap between these works and the implementations in practice. Among the
hundreds of blockchain exchanges, only a handful of them support PoL [15]. Some rely on a trusted
auditor to prove their liabilities, such as Kraken [1]. However, this trust model is not desired due
to the possibility of collusion between the auditor and the exchange. Such auditing might fail when
the auditor is deceived such as in the infamous Enron scandal [12]. On the other hand, while other
exchanges assume a decentralized and trustless model (in line with the blockchain space), their
implementation suffers from exploitable attacks that could result in understated liabilities.

In this section we present our survey of the existing landscape for performing PoL by high-
lighting these “problematic” implementations and our suggested fixes. We highlight, that although
cryptocurrency exchanges could potentially take advantage of these incorrect implementations by
under-reporting liabilities, our observations by no means imply that exchanges acted through ma-
licious intent. In fact, it is highly possible that lack of a) proper code/protocol auditing and/or b)
cryptography expertise are the major factors of the observed insecure implementations.

We do believe however that our results can be taken into account by the respective exchanges,
blockchain associations and auditors to further increase customer confidence and potentially result
in a healthier cryptocurrency ecosystem.

4.1 Vulnerable summation tree

We first observe exchanges or auditors using the vulnerable Maxwell’s summation tree [36] in
practice for proof of liabilities, such as [18] or [16] used by BlueHelix Exchange (BHEX / HBTC)
and [2] by Deloitte’s audit for ICONOMI. In these implementations, the hash field of each node in
the tree is defined as h(vl+vr||h(l)||h(r)), as shown in fig. 1, where l and r denote the child nodes.
However, as we discussed in Section 3, this opens up the possibility for the exchange to claim less
liabilities, as shown in fig. 2, namely computing each parent as h(max(vl+vr)||h(l)||h(r)) therefore
computing a different “version” of the liabilities tree on the fly, without the clients ever realizing
this. For instance, User 1 will receive a proof with a valid Merkle path (h2, v

′
2 = 5), (h6, v

′
6 = 0)

without detecting any misbehavior. In the worst case, a malicious VASP could only report the
highest user balance as being its full liabilities (and not the sum of every balance). To mitigate
this vulnerability, we can apply the technique in [32] by defining the tree as h(vl||vr||h(l)||h(r)).
This construction includes both the left and right child value separately (instead of just the sum),
so the trick of reduced liabilities is no longer feasible.

5

Figure 1: Exploitable summation tree

Figure 2: Claiming reduced liabilities

Figure 3: Proof of reduced liabilities

6

4.2 Short Hash Collisions

In BHEX’s PoL implementation [18], we also observe that a 64-bit truncated SHA256 hash is used
for all nodes in the tree. However, this level of truncation is insecure due to increased possibility
of hash collisions. Once an adversary finds a collision in hash for two users, she can assign them
to the same leaf node and return the same Merkle path to them. The total liabilities can then be
under-reported without being detected by any user. The collision chance is significant especially
given the vast computational power that exists in the Bitcoin mining setting. In fact, an exchange
does not need to target for a specific collision, but rather search for any collision in the whole tree
(i.e. a “multi-target attack”), which increases the likelihood of success even more given the large
sizes of such trees. As a rough estimate, given that Bitcoin blocks are now produced with a 80-bit
chosen prefix, a malicious wallet could produce truncated SHA256 collisions using a tiny fraction,
roughly 1/216 of today’s global mining power in Bitcoin, making such attacks economically viable.
However for multi-target attacks, an exchange with 16+ millions of users would require about 240

of hash invocations to find a match, making this attack practically feasible. In short, truncating
hashes in liability proofs is not a recommended practice for earning the trust of the community. In
addition, we discourage the use of insecure hash functions such as the SHA1 used in Coinfloor [4].

4.3 Shared User ID

When verifying inclusion proofs of individual liabilities, users need to make sure proofs they receive
are uniquely binding to each account. However, this is not always done correctly in practice.
We observe that PoL schemes used by Coinfloor [4], Kraken [1], BitMEX [20] and Armanino’s
audits [17] for Gate.io [21] and Ledn.io [5] do not guarantee uniqueness of users’ IDs, and can
potentially let a malicious prover to reuse the same user ID for different users. This in turn would
allow selecting the same user ID for different users having the same balance (and therefore mapped
to the same leaf node in the Merkle tree or the same entry in the report file) and eventually hide
liabilities. We believe the original intent of those exchanges was to provide privacy for the user
by randomly assigning them user IDs, however having user IDs purely determined by the prover
remains exploitable. Similarly, BitMEX attempts to preserve privacy of individual liabilities and
number of users by splitting each user account into multiple leaf nodes as in Maxwell++ [27].
However, there’s no binding between a user and the corresponding leaf nodes, so the prover can
reuse the same leaf nodes for different users (and then claim less liabilities) without being detected.

On the other hand, we observe that BHEX and Deloitte PoL implementations do not suffer from
such issues, as they use their users’ unique usernames and e-mail addresses when deriving these user
IDs, which enforces their uniqueness. In practice, to comply with EU’s GDPR regulation, exchanges
could ask from the users to provide a long unique-ID and avoid hashing private information, such
as email addresses. All in all, we encourage binding unique user credentials with user IDs and all
corresponding leaf nodes in Maxwell++ style constructions or better DAPOL+.

4.4 Multiple root commitments

In a secure PoL scheme, the prover needs to publish the commitment on a public bulletin board
(PBB) to guarantee users have consistent views of the public commitment. Otherwise, a malicious
prover can supply different commitments to different users so that the proofs received are all
valid but are not binded to the same commitment. In this way, the prover can effectively omit
some balances in each commitment without being detected. Although most PoL implementations
we looked into, such as in BHEX, Deloitte and Kraken, mentioned that the commitment should
be “published”, the operation of publishing on PBB are sometimes done inappropriately. For
example, Coinfloor publishes a hash of the report file on blockchain and then the transaction ID
on its website [4]. Since blockchains are considered as a practical implementation of a PBB [31], the
former operation guarantees non-equivocation of the commitment. However, when the prover serves

7

the transaction ID on its own website, the whole liability proof becomes problematic. If users only
access this particular website, the prover who controls that website might present different versions
of the commitment to different users, thus opening the possibility of hiding liabilities. Similarly,
BitMEX publishes the commitment on an AWS server, which however remains exploitable.

To avoid equivocation, we encourage exchanges to publish these commitments on a PBB such
as a blockchain, and users verifying their commitments would be confident that proof manipulation
would be practically infeasible because of the blockchain’s immutability properties. Users should
also ensure that no more than one commitment for the same solvency round is published in the
PBB. As an alternative approach, the commitment could be digitally signed by a trusted auditor.

4.5 Privacy concerns

As discussed in Section 2.1, there are also privacy concerns on PoLs in addition to the potential
attacks to claim less liabilities. While DAPOL+ includes a formal general definition of privacy [33],
here we particularly focus on the privacy of individual liabilities and number of users, and demon-
strate how much sensitive data is leaked in each scheme.

First, the PoL implementations by BHEX, Deloitte’s audits and Coinfloor leak individual user
liabilities. In particular, PoL proofs received by users consists of the balance of one or multiple other
users. We recommend using Pedersen commitments like in DAPOL+ to hide individual liabilities.
Alternatively, the prover can split each account into multiple entries as in BitMEX, but this results
in an efficiency degradation proportionally to the number of entries each account is split into.

Additionally, the schemes of BHEX, Deloitte’s audits, Coinfloor and Kraken leak the total
number of users. Using sparse Merkle tree as suggested in DAPOL+ could mitigate such problem.
As above, the exchanges could simply split each account into multiple entries and therefore also
hide the number of users, but again this approach comes at a cost of efficiency.

4.6 Dispute resolution and private verification pattern

Apart from the fundamental security and privacy requirements for PoL, there are a few additional
problems that may be of concern in practice but not carried out right now. One is dispute resolution,
which is still an open research problem [29]. For instance, a user might fail to verify a liability proof,
however there is no mechanism or protocol in place to resolve a dispute between an exchange and a
user against a third party judge, when the former claims that the user’s account balance is indeed
included in the liabilities proof and the latter claims the opposite.

Private verification pattern as discussed in [33] is another subtle problem to be concerned. For
each audit, not all users actually query for PoL proofs and perform verification. If a malicious
prover learns that some users never verifies the proofs, she can safely omit their balances in the
next solvency round. Therefore it would be nice to hide users’ verification pattern from the prover.
Outsourcing proofs to a trusted auditor like in Kraken helps mitigate this issue but there is privacy
leak to the auditor and Kraken’s implementation doesn’t provide verifiability of the sum but only
individual inclusions. It remains an open problem to efficiently hide verification pattern without a
trusted third party, although private information retrieval techniques have been proposed [28].

5 Conclusion

Having provided an extensive survey of the cryptocurrency exchange landscape in terms of their
liability proofs, by pinpointing problematic implementations and their mitigations, we observe
that few exchanges implement a Proof of Solvency protocol, and even fewer implement it correctly.
We highlight 4 different attack types in these proofs, as well as trust models inconsistent with
blockchain decentralization and privacy concepts. We believe that lack of user education combined
with these few, exploitable implementations are responsible for the slow adoption of those proofs.
We hope our work, being practical in nature, will directly serve as a standard towards improving
cryptocurrency exchange auditability and improve user trust in the blockchain ecosystem.

8

References

1. Audit: Learn about kraken’s audit process, https://www.kraken.com/proof-of-reserves-audit
2. Bhex 100% proof of reserve, https://medium.com/iconominet/proof-of-solvency-technical-

overview-d1d0e8a8a0b8
3. Binance exchange, https://www.binance.com/
4. Bitcoin audits, https://web.archive.org/web/20210706073111/https://coinfloor.co.uk/hodl/

proof/#reports
5. Check your proof of reserves in 5 simple steps, https://blog.ledn.io/en/blog/proof-of-reserves/

step-by-step
6. Coinbase blog, https://blog.coinbase.com/goodbye-toshi-hello-coinbase-wallet-the-

easiest-and-most-secure-crypto-wallet-and-browser-4ba6e52e4913
7. Coinbase exchange, https://www.coinbase.com/
8. Conio wallet, https://www.conio.com/en/
9. Dapper account manager, https://www.meetdapper.com/

10. Digital wallets - variations and features, https://cryptoapis.io/blog/41-digital-wallets-

variations-and-features
11. Electrum bitcoin wallet, https://electrum.org
12. Enron scandal, https://en.wikipedia.org/wiki/Enron_scandal.
13. Mapping the universe of 460 million bitcoin addresses, https://blog.chainalysis.com/reports/

bitcoin-addresses
14. Metamask - a crypto wallet & gateway to blockchain apps, https://metamask.io/
15. Nic’s por wall of fame, https://niccarter.info/proof-of-reserves/
16. Proof of liabilities implementation, https://github.com/olalonde/proof-of-liabilities
17. Proof of reserves, https://www.armaninollp.com/software/trustexplorer/proof-of-reserves/
18. Proof of solvency: Technical overview, https://support.hbtc.co/hc/en-us/articles/

360046287754-BHEX-100-Proof-of-Reserve
19. Tether’s bank says it invests customer funds in bitcoin, https://www.coindesk.com/tethers-bank-

says-it-invests-customer-funds-in-bitcoin
20. Tool suite for generating and validating proofs of reserves(por) and liabilities(pol), https://github.

com/BitMEX/proof-of-reserves-liabilities
21. Your gateway to cryptocurrency, https://www.gate.io/
22. Zengo wallet, https://zengo.com/
23. Chamber of digital commerce: Proof of reserves – establishing best practices to build trust in the

digital assets industry (2021)
24. Bitfury: On blockchain auditability (2016)
25. Blackshear, S., Chalkias, K., Chatzigiannis, P., Faizullabhoy, R., Khaburzaniya, I., Kogias, E.K., Lind,

J., Wong, D., Zakian, T.: Reactive key-loss protection in blockchains. Cryptology ePrint Archive,
Report 2021/289 (2021), https://ia.cr/2021/289

26. Camacho, P.: Secure protocols for provable security. https://www.slideshare.net/philippecamacho/
protocols-for-provable-solvency-38501620 (2014)

27. Chalkias, K., Lewi, K., Mohassel, P., Nikolaenko, V.: Practical privacy preserving proofs of solvency.
Amsterdam ZKProof Community Event (2019)

28. Chalkias, K., Lewi, K., Mohassel, P., Nikolaenko, V.: Distributed auditing proofs of liabilities. Cryp-
tology ePrint Archive, Report 2020/468 (2020), https://eprint.iacr.org/2020/468

29. Chatzigiannis, P., Baldimtsi, F., Chalkias, K.: Sok: Auditability and accountability in distributed
payment systems. In: ACNS (2021)

30. Dagher, G.G., Bünz, B., Bonneau, J., Clark, J., Boneh, D.: Provisions: Privacy-preserving proofs of
solvency for bitcoin exchanges. In: CCS (2015)

31. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: NDSS. Citeseer (2014)
32. Hu, K., Zhang, Z., Guo, K.: Breaking the binding: Attacks on the merkle approach to prove liabilities

and its applications. Computers & Security (2019)
33. Ji, Y., Chalkias, K.: Generalized proof of liabilities. In: CCS (2021)
34. McMillan, R.: The Inside Story of Mt. Gox, Bitcoin’s $460 Million Disaster. https://www.wired.com/

2014/03/bitcoin-exchange/ (2014)
35. Moore, T., Christin, N.: Beware the middleman: Empirical analysis of Bitcoin-exchange risk. In: FC

(2013)
36. Wilcox, Z.: Proving your bitcoin reserves. https://bitcointalk.org/index.php?topic=595180.0

9

https://www.kraken.com/proof-of-reserves-audit
https://medium.com/iconominet/proof-of-solvency-technical-overview-d1d0e8a8a0b8
https://medium.com/iconominet/proof-of-solvency-technical-overview-d1d0e8a8a0b8
https://www.binance.com/
https://web.archive.org/web/20210706073111/https://coinfloor.co.uk/hodl/proof/#reports
https://web.archive.org/web/20210706073111/https://coinfloor.co.uk/hodl/proof/#reports
https://blog.ledn.io/en/blog/proof-of-reserves/step-by-step
https://blog.ledn.io/en/blog/proof-of-reserves/step-by-step
https://blog.coinbase.com/goodbye-toshi-hello-coinbase-wallet-the-easiest-and-most-secure-crypto-wallet-and-browser-4ba6e52e4913
https://blog.coinbase.com/goodbye-toshi-hello-coinbase-wallet-the-easiest-and-most-secure-crypto-wallet-and-browser-4ba6e52e4913
https://www.coinbase.com/
https://www.conio.com/en/
https://www.meetdapper.com/
https://cryptoapis.io/blog/41-digital-wallets-variations-and-features
https://cryptoapis.io/blog/41-digital-wallets-variations-and-features
https://electrum.org
https://en.wikipedia.org/wiki/Enron_scandal.
https://blog.chainalysis.com/reports/bitcoin-addresses
https://blog.chainalysis.com/reports/bitcoin-addresses
https://metamask.io/
https://niccarter.info/proof-of-reserves/
https://github.com/olalonde/proof-of-liabilities
https://www.armaninollp.com/software/trustexplorer/proof-of-reserves/
https://support.hbtc.co/hc/en-us/articles/360046287754-BHEX-100-Proof-of-Reserve
https://support.hbtc.co/hc/en-us/articles/360046287754-BHEX-100-Proof-of-Reserve
https://www.coindesk.com/tethers-bank-says-it-invests-customer-funds-in-bitcoin
https://www.coindesk.com/tethers-bank-says-it-invests-customer-funds-in-bitcoin
https://github.com/BitMEX/proof-of-reserves-liabilities
https://github.com/BitMEX/proof-of-reserves-liabilities
https://www.gate.io/
https://zengo.com/
https://ia.cr/2021/289
https://www.slideshare.net/philippecamacho/protocols-for-provable-solvency-38501620
https://www.slideshare.net/philippecamacho/protocols-for-provable-solvency-38501620
https://eprint.iacr.org/2020/468
https://www.wired.com/2014/03/bitcoin-exchange/
https://www.wired.com/2014/03/bitcoin-exchange/
https://bitcointalk.org/index.php?topic=595180.0

	Broken Proofs of Solvency in Blockchain Custodial Wallets and Exchanges

